
SEER: Super-Optimization Explorer for High-Level
Synthesis using E-graph Rewriting

Jianyi Cheng1, Samuel Coward1,2, Lorenzo Chelini1, Rafael Barbalho1 and Theo Drane1
1Intel Corporation, USA; 2Imperial College London, UK

jianyi.cheng@cl.cam.ac.uk, {samuel.coward, lorenzo.chelini, rafael.barbalho, theo.drane}@intel.com

Abstract
High-level synthesis (HLS) is a process that automatically
translates a software program in a high-level language into
a low-level hardware description. However, the hardware
designs produced by HLS tools still suffer from a significant
performance gap compared to manual implementations. This
is because the input HLS programsmust still be written using
hardware design principles.
Existing techniques either leave the program source un-

changed or perform a fixed sequence of source transforma-
tion passes, potentially missing opportunities to find the
optimal design. We propose a super-optimization approach
for HLS that automatically rewrites an arbitrary software
program into efficient HLS code that can be used to gener-
ate an optimized hardware design. We developed a toolflow
named SEER, based on the e-graph data structure, to effi-
ciently explore equivalent implementations of a program at
scale. SEER provides an extensible framework, orchestrating
existing software compiler passes and hardware synthesis
optimizers.
Our work is the first attempt to exploit e-graph rewrit-

ing for large software compiler frameworks, such as MLIR.
Across a set of open-source benchmarks, we show that SEER
achieves up to 38× the performance within 1.4× the area
of the original program. Via an Intel-provided case study,
SEER demonstrates the potential to outperform manually
optimized designs produced by hardware experts.

1 Introduction
High-level synthesis (HLS) is a process that automatically
translates a software program in a high-level language such
as C/C++ into a hardware description in a low-level language
such as Verilog/VHDL. This allows software engineers with-
out any hardware background to customize their hardware
accelerators. Today, HLS tools have been widely used and ac-
tively developed in both academia and industry, for example,
Dynamatic [23] from EPFL, Bambu [5] from the Politecnico
di Milano, Stratus HLS [48] from Cadence, Catapult HLS [6]
from Siemens, Intel HLS [22] from Intel and Vitis HLS [56]
from AMD Xilinx.
Still, it remains the case that automatically synthesizing

efficient hardware designs from arbitrary high-level software
programs is challenging. A major reason is that each HLS
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Figure 1. 𝑝𝑖 denotes an optimization pass, and 𝑠𝑖 denotes
a representation of a program. HLS Tools 1 and 2 take the
same input program 𝑠0 and apply different sequences of
optimization passes, 𝑝𝑖 and 𝑝′𝑖 respectively. The transformed
programs 𝑠𝑘 and 𝑠′

𝑘
may result in different hardware designs

because of the difference in pass sequences. SEER efficiently
explores all these possibilities in parallel using e-graphs, 𝑒𝑖 .

tool only applies a fixed sequence of general source transfor-
mations for all input programs, as shown in Figure 1. This
significantly restricts the optimization space for a particular
program. This is known as the ‘phase-ordering problem’
in compilers [34].
The phase-ordering problem for HLS tools is more chal-

lenging for two reasons. First, an HLS tool contains opti-
mizations at different granularities, such as higher-level
control path optimizations and lower-level data path opti-
mizations. These optimizations may interfere, resulting in a
larger, more complex space of optimization orderings than in
software compilers. Second, evaluating hardware metrics
from an input software program is challenging in existing
frameworks. This means that the optimizer needs to repeat-
edly call the downstream synthesis tool to evaluate which
source representation is efficient when mapping into hard-
ware.

Existing works on HLS source rewriting build an optimiza-
tion sequence based on heuristics. This misses opportunities
to perform program-specific optimizations for a given input
program, potentially making the optimal hardware design
unreachable. In practice, significant manual effort is spent
on rewriting the program source for HLS tools to resolve the
problem above. Both Stratus HLS [48] and Vitis HLS [56],
provide coding guidelines to restrict users to a subset of C
programs for better performance. A designer must write the
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1 int x[200], y[200];
2
3 loop_1:
4 for (int i=0; i<100; i++)
5 x[i+1] = f(x[i]);
6
7 loop_2:
8 for (int i=0; i<100; i++)
9 y[i] = g(y[i]);
10
11 loop_3:
12 for (int i=0; i<100; i++)
13 x[i+2] = h(x[i]);

Listing 1. Baseline code

1 int x[200], y[200];
2
3 // Fuse loop_1 and loop_2
4 loop_1_2:
5 for (int i=0; i<100; i++)

{
6 x[i+1] = f(x[i]);
7 y[i] = g(y[i]);
8 }
9
10
11 loop_3:
12 for (int i=0; i<100; i++)
13 x[i+2] = h(x[i]);

Listing 2. Transform 1

1 int x[200], y[200];
2
3 loop_1:
4 for (int i=0; i<100; i++)
5 x[i+1] = f(x[i]);
6
7
8 // Fuse loop_2 and loop_3
9 loop_2_3:
10 for (int i=0; i<100; i++)

{
11 y[i] = g(y[i]);
12 x[i+2] = h(x[i]);
13 }

Listing 3. Transform 2

Figure 2. A motivating example of loop fusion. loop_1 and loop_3 cannot be fused because of the memory dependence on
array x. It is challenging to determine which representation is better, fusing loop_1 and loop_2 or fusing loop_2 and loop_3?

HLS program following these guidelines and using hardware
design principles in order to produce efficient hardware.
In order to tackle the problems above, our work aims to

solve the following challenges:

1) Efficiency: How should one efficiently explore the vast
space of possible optimization sequences?
2) Hardware awareness: How should one pick a sequence
of optimizations that can be mapped into efficient hardware
based on the program source?

We propose an approach named SEER (Super-optimization
Explorer using E-graph Rewriting) to resolve the challenges
above. Given a software program, SEER automatically deter-
mines a sequence of optimizations for efficient hardware syn-
thesis. SEER is the first approach to HLS ‘super-optimization’,
since it explores different source-level optimization order-
ings in parallel, then customizes the sequence to the input
program.
SEER enables super-optimization using an efficient data

structure, known as an e(quivalence)-graph [7], which pre-
serves a set of program representations to resolve the phase-
ordering problem. As shown in Figure 1, SEER can explore
alternative optimization sequences in a single e-graph at the
same time. Our main research contributions include:

• a technique to determine an optimization order for
efficient hardware synthesis by exploring equivalent
representations of a program in an e-graph;

• an orchestration technique that explores an e-graph
with existing optimization passes from large software
frameworks, such as MLIR [33], and hardware synthe-
sis optimizers, such as ROVER [10], to explore rewrit-
ing at scale;

Table 1. The performance of hardware generated from the
representations in Figure 2 depends on the operation laten-
cies. These could be affected by other transformation passes
and are not evaluated in the existing flow. The best perfor-
mance in each case is highlighted.

f g h Listing 1 Listing 2 Listing 3

Case 1 10 100 1 1308 1196 1205
Case 2 1 100 10 813 710 701

• a hardware-aware evaluationmodel at the source level
to evaluate the quality of hardware synthesized from
a representation of a software program; and

• over a set of benchmarks, SEER achieves up to 38× the
performance within 1.4× the area of the original pro-
gram, and demonstrates the potential to outperform
manually optimized designs by hardware experts.

The rest of the paper is organized as follows. Section 2
presents a motivating example to illustrate the challenge
in automated source rewriting for HLS. Section 3 provides
the necessary background. Section 4 explains the theoretical
details of our work. Section 5 evaluates the effectiveness of
our work by comparing it with a commercial HLS tool when
passed the baseline pragma-free source code and when given
human guidance via HLS pragmas. Finally, in Section 6 we
discuss related work.

2 Motivating Example
Using an example, we present the challenge to conventional,
fixed pass-order HLS flows and how our approach can over-
come these challenges. Listing 1 presents a program with

2



Manual Source Rewriting

Semi-auto Design-Space Exploration

Auto High-Level Synthesis Tools

• If conversion
• Memory forwarding
• Loop fusion
• …

• Scheduling
• Binding
• Retiming
• …

• Loop unrolling factor
• Loop tiling factor
• Array partitioning factor
• …

Software Programs

Parameterized HLS 
Programs

Optimized HLS 
Programs

Hardware Design

Figure 3. HLS development flow for hardware production.
The right side provides examples of optimizations for each
step. SEER aims to solve the challenge in efficient source
rewriting for arbitrary programs (shown as Manual) for
better hardware performance.

three sequential loops. Loop fusion is an optimization tech-
nique that combines multiple sequential loops into a single
loop. In HLS, loop fusion avoids the area overhead of the loop
control logic for separate loop instances and could exploit
more data parallelism in the fused loop body. However, the
throughput of a loop is restricted by the slowest data path in
the loop body. Loop fusion can exhibit an area-performance
tradeoff.
A pre-condition for loop fusion being valid is that the

sequential loops must have no data dependence. For the ex-
ample in Listing 1, loop_1 and loop_3 access array x at over-
lapping indices, preventing loop fusion. However, loop_2
has no data dependence with either loop_1 or loop_3, since
it only accesses array y. This means that we can safely fuse
loop_1 and loop_2 (Listing 2) or fuse loop_2 and loop_3
(Listing 3). Note that the user or automated tool must choose
between these fusion passes, since Listing 2 is not reachable
from Listing 3, and vice versa.
Without evaluating downstream hardware optimization

passes, it is difficult to determine whether Listing 2 or 3 will
generate better hardware. Table 1 shows the performance
of the hardware generated from these representations for
different latencies of the functions f and h. Such latency
information is unpredictable at the source rewriting stage
because later passes might alter these functions. This cor-
relation could make a locally sub-optimal transformation
globally optimal. SEER models hardware scheduling infor-
mation in software and efficiently explores transformations
of these representations in an e-graph instead of manipulat-
ing a single representation.

Problem Formalization
A key novelty of our work is that SEER explores the cor-
relation among transformation passes, which opens up a

(x«1)+x → (x*2)+x → x*3

3
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Figure 4. An e-graph grown from two rewriting steps to
represent three equivalent expressions. Each green node is
an e-node, and each red box is an e-class. Edges connect
e-nodes to child e-classes.

larger design space. Let 𝑃 be a set of available transformation
passes, 𝑃N be all possible sequences of an arbitrary length
of the elements in 𝑃 and let 𝑅 be the set of functionally
equivalent representations of a given program. As shown
in Figure 1, an HLS tool uses a fixed sequence of passes
𝑡 = (𝑝0, 𝑝1, ..., 𝑝𝑘 ) ∈ 𝑃N. The transformation steps in 𝑡 result
in a set of representations 𝑅′, where 𝑅′ ⊆ 𝑅. SEER searches
the space of pass sequences 𝑃N and extracts a customized
𝑡 ′ ∈ 𝑃N for each input program. SEER can explore a poten-
tially larger set of representations 𝑅′′, where 𝑅′ ⊆ 𝑅′′ ⊆ 𝑅.
This is because SEER searches for 𝑡 ′ by exploring 𝑃N in par-
allel. In the rest of the paper, we show how to construct 𝑅′′

using an e-graph and how to determine 𝑡 ′ for mapping an
arbitrary program to efficient hardware.

3 Background
3.1 Phase-Ordering Challenges in High-Level

Synthesis
HLS tools automatically map a high-level software program
into a custom hardware design in a low-level hardware de-
scription, e.g. Verilog. A production HLS development flow
comprises three steps, as shown in Figure 3. First, a high-
level specification of an algorithm is manually rewritten
following the recommended coding guidelines producing
code that is amenable to optimization by the HLS tool. Sec-
ond, the rewritten HLS program usually contains design con-
straints expressed via inline directives or pragmas to exploit
hardware parallelism and resource sharing. The process of
exploring these constraints is known as design-space explo-
ration (DSE) [44] and is already semi-automated [17, 26, 35].
Finally, the optimized design constraints are sent with the
HLS program to the HLS tool, which synthesizes a hard-
ware design. The HLS tool automatically performs low-level
hardware optimizations, such as hardware scheduling and
binding, which maps the start times of operations into clock
cycles with efficient hardware resource sharing [4, 20, 27, 61].
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Figure 5. An overview of the SEER toolflow. Our contributions are highlighted.

The HLS tool also performs register retiming to achieve a
high clock frequency [20, 27].
The phase-ordering problem refers to the challenge of

determining the optimal order of optimization passes at com-
pile time. It is challenging due to the destructive interaction
of optimization passes, as discussed in Section 2. In HLS, the
phase-ordering problem is more complex, because the bene-
fit of software transformation passes, such as loop fusion and
if conversion, can only be evaluated by analyzing the gen-
erated hardware. In this work, SEER orchestrates software
transformations for hardware optimization using hardware
modeling. To the best of our knowledge, SEER is the first
attempt to resolve the general phase-ordering problem in
HLS.

3.2 E-graph Representation
An e(quivalence)-graph, is a data structure used to repre-
sent a set of equivalent expressions [39, 50, 55] as shown in
Figure 4. The e-graph organizes functionally equivalent ex-
pressions into equivalence classes, known as e-classes, drawn
as red boxes in the figure. Nodes in an e-graph, known as
e-nodes, represent either values or operators with edges con-
necting e-class children, illustrated as green nodes in the
figure. E-classes are represented as groups of e-nodes. The
e-graph is grown via constructive rewriting, meaning that
the left-hand side of the rewrite is retained in the data struc-
ture. A minimal cost expression is typically extracted from
the e-graph, based on a user-defined cost model.
A main benefit of the e-graph data structure is that it ef-

ficiently represents equivalent expressions by sharing and
reusing common sub-expressions, such as sharing x in Fig-
ure 4. Operator e-nodes have edges connected to child e-
classes. This captures the intuition that, for a given sub-
expression, we can choose from a set of equivalent sub-
expressions. The reduced redundancy in the e-graph enables
more efficient analysis and optimization of a program.
E-graphs can be found in modern SMT solvers, such as

Z3 [15, 16]. The recently developed egg library [55], pro-
vides an extensible e-graph implementation. One relevant
work [12], identified improvements to program analysis ca-
pabilities by using the e-graph representation. We describe

how SEER exploits this in Section 4.5. SEER is the first ap-
proach to apply e-graphs to program optimization using
compiler frameworks such as MLIR.

In this work, we incorporate and extend an existing egg based
data path optimization engine, named ROVER [10, 11]. ROVER
takes a combinational hardware design and optimizes the
data paths using optimizations for circuit area minimiza-
tion. The existing ROVER implementation leaves the control
path untouched, such as loops. SEER generalizes ROVER to a
higher-level software abstraction for HLS tools and combines
it with control path optimizations for pipelined designs.

3.3 Multi-Level Intermediate Representation
Multi-Level Intermediate Representation (MLIR) [33] is a
compiler infrastructure framework developed within the
Low-Level Virtual Machine (LLVM) project [32]. It aims
to address the challenges of representing and optimizing
programs at different levels of abstraction. Dialects can be
seen as a namespace for operations, types and attributes
modelling specific abstractions (i.e. control flow or affine
loops). Primarily, SEER uses the affine and scf dialects.
The affine dialect provides a program abstraction for affine
operations, and the scf dialect provides a program abstrac-
tion for structured control flows. MLIR offers a comprehen-
sive set of transformation and analysis passes that can be
directly reused and explored in SEER.

4 Methodology
In this section, we describe the proposed source-to-source
super-optimization tool for HLS. First, we provide an overview
of the proposed SEER toolflow. We then introduce a new in-
termediate language, named SeerLang, that provides the first
interface between MLIR and the egg e-graph library. Next,
we explain the rewriting rules included in SEER and how to
explore these rewriting rules in the e-graph, to construct 𝑅′′,
as defined in Section 2. Finally, we describe the cost func-
tions used for representation extraction for determining 𝑡 ′,
as defined in Section 2.
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4.1 SEER Overview
To maximize generality and avoid targeting a particular HLS
tool, SEER performs source-to-source transformation on the
input software program and generates an efficient represen-
tation for HLS tools. SEER accepts C, C++, SystemC code, and
other software programming languages that can be trans-
lated to MLIR. Figure 5 illustrates a high-level overview of
the SEER tool flow for HLS super-optimization.

1○ The input program in C/C++/SystemC is parsed by a C
front end named Polygeist [37], a C (and C++) front end
for MLIR, translating the program into the MLIR affine
or scf dialects. We implemented MLIR transformation
passes for converting a subset of SystemC.

2○ The SEER front end translates the MLIR into a new inter-
mediate language, SeerLang, which provides an interface
between MLIR and the e-graph library, egg [55]. Seer-
Lang is described in Section 4.2.

3○ From SeerLang an initial e-graph is constructed in egg,
where each e-class contains a single e-node.

4○ SEER provides a set of patterns to egg, which are used
to search for rewriting opportunities in the e-graph, a
process known as e-matching.

5○ Once a pattern in the e-graph is matched, a validity con-
dition is checked and a new equivalent SeerLang expres-
sion is constructed. Section 4.3 describes SEER’s rewrites.

6○ If the rewrite is valid, the new SeerLang expression is
unioned into the e-graph, as shown in Figure 4. The e-
graph continues to grow until reaching a user defined
limit, or until no new equivalent representations can be
found. Rewriting in SEER is explained in Section 4.4.

7○ From the final e-graph, an extraction is performed to
obtain an efficient implementation based on control path
and data path hardware cost functions. The details of
these cost functions are explained in Section 4.6.

8○ The extracted SeerLang expression is translated back to
the MLIR affine or scf dialects by the SEER back end,
such that we can exploit existing MLIR back ends.

9○ The generated MLIR is converted back to SystemC us-
ing emitC [36], such that the optimized program can be
parsed by HLS tools. We extended the C back end to emit
SystemC programs.

10○ The equivalence between the original and transformed
programs is proven by a formal equivalence checking
tool, VC Formal from Synopsys [49], at SystemC level.
The equivalence check steps are explained in Section 4.7

SEER is composed of two main components. MLIR passes
translating MLIR dialects to and from SeerLang implemented
in around 2600 lines of C++ and an e-graph optimizer built
on-top of the egg library implemented in around 600 lines
of Rust.

1 int x[8];
2 int i;
3 for (i=0;i<8;i

++)
4 {
5 int a = x[i];
6 int b = a

*2+1;
7 x[i] = b;
8 }

Listing 4. C source

1 affine.for %i=0 to 8 step
1 {

2 %a=affine.load %x[%i] :
memref <8xi32 >

3 %b0=arith.muli %a,2 :
i32

4 %b1=arith.addi %b0 ,1 :
i32

5 affine.store %b1, %x[%i]
: memref <8xi32 >

6 }

Listing 5.MLIR code

1 (affine.for "affine.for_0" %i 0 8 1 none
none none

2 (block
3 (seq
4 (affine.load i32 "%a" i32 (8) "%x" (%i))
5 (affine.store
6 i32 (+ i32 i32 (* i32 i32 "%a" i32 2) i32 1)
7 i32 (8) "%x" (%i))
8 )))

Listing 6. SeerLang expression

Figure 6. Example of SeerLang for expressing a for loop
and memory operations.

4.2 SEER Intermediate Representation
A key challenge for enabling MLIR exploration via e-graph
rewriting in egg is that these two frameworks do not share
a common representation language, and re-implementing
either would require significant engineering effort. We iden-
tified three potential solutions for orchestrating them in the
same toolflow. First, we could keep each MLIR represen-
tation in memory but removing redundancy among these
versions is challenging, making the memory size unscalable.
Second, we could keep a single representation and pass traces
for obtaining each new MLIR representation. This leads to
unscalable compilation time for reproducing the required
representation. Finally, we decided to propose a new lan-
guage named SeerLang in egg for translation to and from
MLIR.

In egg, users define an S-expression based language similar
to Common Lisp [46] to represent expressions.

term ::= (operator [term] [term]. . . [term])
This language format allows users to concisely express rewrites.
We defined a domain-specific representation, called Seer-
Lang, that provides an interface between MLIR and egg. The
semantics of SeerLang are similar to MLIR as the represen-
tation is for translation only. SeerLang supports a subset of
MLIR operations including operations in the affine, scf,
memref and arith dialects, but can be extended to support
other MLIR operations. In addition, SeerLang supports a seq
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Table 2. Example SEER rewriting rules implemented di-
rectly in egg. SEER contains 106 data path and gate-level
rewrites [10]. All datapath rewrites are signage and bitwidth
dependent.

Class Pattern Transformation

Control Path (seq 𝑎 (seq 𝑏 𝑐)) (seq (seq 𝑎 𝑏) 𝑐)
(𝑎 × 𝑏) ≪ 𝑐 (𝑎 ≪ 𝑐) × 𝑏

𝑎 ? (𝑏 + 𝑐) : (𝑑 + 𝑒) (𝑎 ? 𝑏 : 𝑑) + (𝑎 ? 𝑐 : 𝑒)
(𝑎 × 𝑏) + 𝑎 𝑎 × (𝑏 + 1)
𝑎 ≪ 𝑐 𝑎 × 2𝑐

(𝑎 ≪ 𝑏) ≪ 𝑐 𝑎 ≪ (𝑏 + 𝑐)

Data Path

−𝑎 𝑎 + 1

(𝑎&𝑏) ⊕ (𝑎&𝑐) 𝑎&(𝑏 ⊕ 𝑐)
𝑎 ⊕ 𝑎 0Gate Level
𝑎&𝑏 𝑎∥𝑏

operator to encode the original program ordering between
two operations.
Here we introduce two key constructs in SeerLang, op-

eration and block, inspired by MLIR. An operation takes
a set of inputs and produces a set of results. An operation
could be a data path operation like an add operation or a
mul operation, or a control path operation like a function,
a loop or an if statement. A block contains a set of oper-
ations. In each block, the SeerLang front end analyses the
data dependence between operations in the same block and
reconstructs expression trees. A seq operation is purely an
annotation, preserving the original program order by keep-
ing memory operations in the block and associating them
using seq operations. This facilitates memory dependence
analysis for the transformation pass.
An example of SeerLang is shown in Figure 6. Listing 4

shows a for loop that contains two memory operations. This
is translated into Listing 5 in the MLIR affine dialect. The
for loop in C is translated into an affine.for operation
because the loop contains only affine memory accesses. The
memory operations are translated into affine memory op-
erations as the array index is a simple loop iterator and is in
affine form. The arithmetic operations are translated to oper-
ations in the MLIR arith dialect. The equivalent SeerLang
of Listing 5 is shown in Listing 6.
Translating into SeerLang from MLIR is nearly lossless

since each operation in SeerLang keeps the type and operand
information, except for the program order of independent
data path operations. Independent operations can be safely
executed out-of-order so SeerLang does not maintain their
original program order during the translation. The data de-
pendence is analyzed by the front end of SeerLang when
translating from MLIR. For example, in Listing 6, the arith-
metic operations for %b0 and %b1 are converted into a nested
expression at line 6. This recovers the data flow graph of the

0 2 4 6 8

loop unroll
loop fusion

loop interchange
loop flatten

loop perfection
loop pipeline
if conversion

memory forward
memory reuse
if correlation

control flow mux

Number of Benchmarks

Figure 7. The number of benchmarks which each control
flow transformation was successfully applied to out of the
nine benchmarks evaluated.

block for data path optimization. The operations with a po-
tential data dependence are connected using seq operations.
In SEER, we assume there exists a data dependence between
every two memory operations for simplicity. The memory
operations are connected using seq operations, such as the
load and store operations in Listing 6. This preserves the
program order of memory access and ensures the correctness
of memory transformation.

4.3 Rewriting Rules
The rewriting rules in SEER enable the exploration of equiv-
alent implementations of a program. SEER supports both
internal rewrites, expressed directly in SeerLang, and exter-
nal rewrites, expressed as MLIR passes. For internal rules,
egg can directly apply them to add equivalent sub-expressions
to the e-graph. A subset of these rules is shown in Table 2.
For external rules, SEER leverages existing MLIR transforma-
tion passes, reducing the engineering effort required. SEER
adopts existing rewrites in MLIR and orchestrates them in
egg. Specifically, external rules are implemented as dynamic
rewrites in egg, where SEER matches a SeerLang pattern and
then construct an equivalent implementation using an exter-
nal pass. Each dynamic rewrite calls a set of MLIR passes for
analysis and transformation.
In this construction, SeerLang is translated into a com-

patible representation, modified by the external pass, and
translated back to SeerLang. egg can then union this new sub-
expression into the appropriate e-class. Such an approach
makes it simple to implement new rules and enables the
reuse of existing rules from other toolflows. SEER rewrites
at different granularities, allowing it to simultaneously opti-
mize at the control path-level, data path-level and gate-level.
First, the control path-level rewrites modify the control

flow graph (CFG) of the original program. Particularly, we
focus on the transformation of for loops and if statements.

6



func

args returnsblock

seq seq

loop_1 loop_2 loop_3

seq seq loop_2_3

Seq associative rule:
(seq (seq loop_1 loop_2) loop_3) 

(seq loop_1 (seq loop_2 loop_3) 

Loop fusion rule:
(seq loop_2 loop_3) 

condition = MLIR changed & No error 

loop_2_3 

block: 
affine.for {
… } {op_name = loop_1} 

affine.for{
… } {op_name = loop_2} 

affine.for{
… } {op_name = loop_3} 

block: 
affine.for {
… } {op_name = loop_1} 

affine.for{
… } {op_name = loop_2_3} 

mlir-opt 
–-affine-loop-fusion

1

2
extract transform

union

extract

validate

transform & union

unconditional

Figure 8. E-graph exploration of the motivational example (Figure 2) using SEER. The e-graph is simplified by merging
subgraphs of loops into single nodes. The green nodes represent the initial e-graph obtained from Listing 1. 1○ illustrates an
example of an unconditional rewrite for a sequential association inside egg. For rewrite 1○, the original sub-expression in the
shaded red region is rewritten to the red node in the same e-class. 2○ illustrates an example of a conditional rewrite for loop
fusion through MLIR. For rewrite 2○, the original sub-expression in the shaded blue region is rewritten to the blue node in the
same e-class.

for (i=0; i<N; i++)
x[3*i] = 
f(x[(i<<1)+i]);

for (i=0; i<N; i++)
x[(i<<1)+i] = 
g(x[3*i]);

for (i=0; i<N; i++)
x[3*i] = 
f(x[3*i]);

for (i=0; i<N; i++)
x[3*i] = 
g(x[3*i]);

Extraction for 
static analysis

for (i=0; i<N; i++)
x[3*i] = 
g(f(x[3*i]));

Loop fusion
for (i=0; i<N; i++)
x[(i<<1)+i] =
g(f(x[(i<<1)+i]));

E-graph

Union

Init

Extraction for 
hardware synthesis

Figure 9. An example of extracting representations using cost
functions for static analysis and hardware synthesis.

for (i=0; i<4; i++)
if (cond[i])
...

if (cond[0])
...;

if (cond[1])
...

if (cond[2])
...

if (cond[3])
...

Static analysis
The branches have 
the same body

If correlation

cond[0] + 
cond[1] + 
cond[2] + 

cond[3] <= 1
if (cond[0] 
|| cond[1]
|| cond[2]
|| cond[3])
...

loop unrolling

Static analysis

Figure 10. An example of using program invariants from
static analysis of one representation for transformation
of another.

This includes ten MLIR passes for loop re-ordering, loop
merging and if conversions. We maximize the reuse of avail-
able MLIR passes in upstream in SEER.

Most of the loop transformation passes are directly adopted
from the MLIR/LLVM upstream and applied to SEER. The
loop unroll pass completely unrolls a given loop. This en-
ables potential loop body reduction by other passes such
as the memory forward pass. We disable exploring loop un-
rolling with different unrolling factors by default to improve
scalability. It is provided as a user option. The loop fusion,
loop interchange and loop flatten passes are existing compiler
transformations which are directly mapped to SEER. The
loop perfection pass converts a loop nest that contains code
in its outer loop body and outside its inner loop body to a
perfect loop nest. This is done by moving the code outside
the inner loop body into the inner loop body with predicates.
Loop perfection opens up opportunities for more loop trans-
formation, such as loop interchanging and loop flattening.
The if conversion pass is used to convert if statements

to select operations, reducing the control flow complexity.

This has beenwidely used in the HLS code transformation for
maximizing a data path region for pipelining. The memory
forward pass removes redundant load and store operations in
the code to reduce memory accesses. The upstream pass only
removes store operations. We extend it to remove redundant
load operations as well.
Customized MLIR passes can also be easily extended to

SEER with the same interface. For instance, the if correlation
pass is a customized pass which detects correlation among
conditions of several sequential if statements and merges
them if the conditions are identical or disjoint. An example
of if correlation is described in Section 4.5. The memory
reuse pass moves a read-only memory access outside the
loop. The control flow mux pass moves an operation in both
branches of an if statement outside the if statement and
select its args in the branches for resource sharing at the
source level. The applicability of the MLIR passes to the nine
benchmarks evaluated in Section 5 is shown in Figure 7.

The data path-level rewrites modify the program at a finer
grain and are mostly re-used from the e-graph based ROVER
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tool [10, 11]. They include expression balancing, constant
folding and manipulation, and strength reduction. Data path
optimization is currently under-explored in existing com-
mercial synthesis tools and recent synthesis-aware data path
rewriting has been shown to reduce circuit area [10, 11]. Two
rewrites from Table 2 are applied to the e-graph in Figure 4.

Finally, the gate-level rewrites also modify the program at
the operator level but target bit-level hardware customiza-
tion. Most gate-level rewrites are well exploited by the logic
synthesis optimization in HLS tools. However, data path
and bit-level rewriting can often interact providing a mu-
tual benefit. SEER restricts the number of gate minimization
techniques to improve scalability. We group these into the
data path set.

4.4 E-graph Rewriting for Super-optimization
SEER alternates between iterations of control flow rewriting
and data path rewriting. At each iteration all rules within
the given rewrite set are applied, growing the e-graph. SEER
interleaves the exploration of these rewrite sets since one
might introduce more rewriting opportunities for the other.
For instance, dead code elimination, a data path rewrite, can
change the dependence constraints, enabling more control
path rewrites. Loop fusion, a control path rewrite, can enable
further rewrites for the fused loop body.

Figure 8 shows the e-graph exploration of the motivating
example introduced in Figure 2. To the initial e-graph, repre-
sented by the green nodes, SEER applies an internal rewrite
rule from Table 2, seq associativity. The general rule, shown
in the top middle of the figure, matches the sub-expression
covered by the red shading and returns an equivalent Seer-
Lang expression. This new expression is unioned into the
matched e-class, where the new nodes are shown in red.

Next SEER applies the external loop fusion MLIR transfor-
mation, that represents the transformation from Listing 1 to
Listing 3. The loop fusion rule searches for two sequential
loops and checks if they satisfy the particular dependency
constraints. First, the sub-expression covered by the blue
shading matches the pattern of the loop fusion rewrite. The
matched SeerLang is translated into the equivalent MLIR.
Then SEER calls the existing loop fusion pass in MLIR, gen-
erating a new MLIR implementation. The loop fusion pass
performs the dependence check internally before the trans-
formation. If the dependence constraints are unsatisfied or
the transformation fails, the pass returns the original MLIR.
The loop fusion rule in egg checks that there were no errors
in the pass and that the returned MLIR differs from the input
then converts this back to SeerLang and performs the union.
In this example, the result from fusing loop_2 and loop_3
is added to the e-graph, as the blue loop_2_3 node.

Many other SEER rewrites can be applied to grow a larger
e-graph than the one presented in Figure 8. Thanks to the e-
graph representation, despite fusing loop_2 and loop_3, the
fusion of loop_1 and loop_2 can also still be triggered. This

would not be possible in a traditional compiler. Note that the
fusion of loop_1 and loop_2_3will be attempted but will fail
due to the validity checks. The e-graph grown after several
rewriting iterations, represents the explored design space of
equivalent implementations. From this e-graph SEER must
now select an efficient HLS implementation.

4.5 Deeper Optimization Opportunities
Prior work observed how retaining multiple representations
in an e-graph can improve program analysis [12]. Here we
observe a practical benefit of this, allowing SEER to discover
implementations that are unreachable with existing com-
piler passes. SEER can learn program invariants from one
representation which it can use to rewrite any equivalent
representation.
Firstly, we shall describe how SEER can resolve loop de-

pendence analysis limitations. Existing loop optimization
passes use polyhedral analysis to detect any loop dependency
issues. Such tools are unable to analyze memory access pat-
terns that are not obviously affine. This introduces a tension,
as a representation for efficient hardware synthesis could
be complex for static analysis. For example in Figure 9, the
memory access index (i«1)+i is area-efficient in hardware
because the shift operation is area-free in ASIC design, and
only one adder is used. Polyhedral analysis tools will fail to
interpret such a non-affine access pattern and conservatively
may prevent subsequent loop optimizations.

Applying the data path rewrites to an e-graph containing
(i«1)+i as shown in Figure 4, SEER discovers the equivalent
affine expression 3*i, which is interpretable by the static
analyzer. Such an expression may not be area-efficient since
it uses a multiplier.

Starting from an initial e-graph containing the input pro-
gram in Figure 9, SEER applies data path rewrites, discover-
ing a representation where both memory indices are in affine
form (top right). When SEER calls its loop fusion pass, it is
presentedwith a choice of many equivalent loop implementa-
tions which it could pass to the external compiler pass. SEER
aims to pass on analysis-friendly implementations, namely
those with affine memory accesses. To achieve this SEER
includes an analysis-friendly cost function, that assigns low
cost to multiplications and additions, making affine expres-
sions lower cost than alternative logic expressions. When a
loop optimization triggers, SEER runs a local extraction pro-
cess on the matched e-class, using the analysis-friendly cost
function, extracting affine memory access patterns where
possible. In Figure 9, SEER can successfully fuse the two
loops (bottom right) and generate a final HLS program using
the hardware-efficient but non-affine memory access pattern
(bottom left).

The extraction process deployed during the rewrite pro-
cess uses the built-in greedy egg extraction method [55],
where the best node is selected from each e-class without
taking into account common sub-expressions. The greedy
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Figure 11. A schedule of a pipelined loop in HLS

method is fast. This is important as SEER may use this ex-
traction process many times during e-graph rewriting. In
Section 4.6 we describe a more computationally expensive
extraction process that provides an accurate model of hard-
ware implementation cost. It is run only once on the final
e-graph.
The advantage is also seen in other programming con-

structs. The code in the top left of Figure 10 shows an if
statement in a for loop. A possible transformation is loop un-
rolling, leading to straight-line code with four if statements
(bottom left). Assuming that all conditions are independent
and at most one of them is true, it is possible to merge the
conditions into a single block. However, existing compiler
passes struggle to compare the source of the true branches
for the if statements, particularly when the code size is large.
Fortunately, these invariants can be easily obtained from the
original representation (top left), which is still present in the
e-graph. With the invariants in place, the transformation is
successful.

4.6 Cost Function Specifications
Once the e-graph rewriting process terminates, due to sat-
uration or reaching a computational limit, SEER extracts
an efficient HLS implementation. This extraction process is
run only once on the final e-graph and provides an accurate
model of hardware implementation cost. SEER combines a
pair of theoretical cost functions to rank the equivalent im-
plementations. We separate the extraction into a two-phase
problem, first extract the control flow nodes that maximizes
performance, then from the fixed control flow minimize the
data path circuit area. The control flow nodes are the sub-
set of SeerLang operations, for example for and if state-
ments, that describe the program’s control flow. SEER has
pre-defined patterns for the cost function, allowing the ex-
tractor to identify and extract these control flow nodes.
The control path is usually parallelized, such that the la-

tency of each data path is hidden by the pipeline. Pipelining
is usually beneficial because it improves performance at a
slightly higher area cost. SEER assumes all the loops are
pipelined by default to achieve better performance.
The control flow cost function evaluates the latency of

pipelined loops in terms of clock cycles. A pipelined loop
has three scheduling constraints: the initiation interval 𝑃 ,
iteration latency 𝑙 , and loop trip count 𝑁 . Figure 11 shows

an example of a simple pipelined loop. The initiation inter-
val is the number of clock cycles between two consecutive
loop iterations. The iteration latency is the latency of a sin-
gle iteration in clock cycles. For this example, 𝑃 = 2 and 𝑙

= 5. These are typically constants because most HLS tools
use static scheduling [4, 61]. The loop trip count represents
the number of iterations. For this example, 𝑁 = 3. The total
latency 𝐿 of a pipelined loop can be obtained based on the
formula shown in Constraint 1 [4]. SEER obtains the schedul-
ing constraints of each loops in the original representation of
the program by calling the HLS tool to schedule the original
representation.

𝐿 = (𝑁 − 1) × 𝑃 + 𝑙 (1)

In order to improve scalability, we approximate the sched-
ule constraints of the newly generated loops during the ex-
ploration from the existing scheduling constraints of the
original loops. This approximation facilitates exploration
at scale, avoiding calls to the HLS scheduler for each new
representation.
For each loop in the initial representation, SEER obtains

(𝑃, 𝑙, 𝑁 ,𝐴) from the initial HLS run, where 𝐴 is the set of
memory accesses in the loop. 𝐴 is a resource constraint used
for estimating the upper bound of throughput based on the
memory bandwidth at run time. For instance, each loop in
Listing 1 has |𝐴| = 2.
Here we provide three key examples of loop transforma-

tions at different levels, loop fusion, loop flattening and loop
unrolling. First, let (𝑃1, 𝑙1, 𝑁1, 𝐴1) and (𝑃2, 𝑙2, 𝑁2, 𝐴2) be the
scheduling constraints for two sequential loops to be fused.
Let𝑀 (𝐴) be the maximum number of memory accesses to
a single array, and assume all the BRAM blocks are single-
port. The fused loop will have constraints (𝑃 ′, 𝑙 ′, 𝑁 ′, 𝐴′) as
follows.

𝑙 ′ =𝑚𝑎𝑥 (𝑙1, 𝑙2) 𝑁 ′ =𝑚𝑎𝑥 (𝑁1, 𝑁2)
𝐴′ = 𝐴1 ∪𝐴2 𝑃 ′ =𝑚𝑎𝑥 (𝑃1, 𝑃2, 𝑀 (𝐴′))

Second, if the outer loop and the inner loop of a perfect loop
nest have scheduling constraints (𝑃𝑜𝑢𝑡𝑒𝑟 , 𝑙𝑜𝑢𝑡𝑒𝑟 , 𝑁𝑜𝑢𝑡𝑒𝑟 , 𝐴𝑜𝑢𝑡𝑒𝑟 )
and (𝑃𝑖𝑛𝑛𝑒𝑟 , 𝑙𝑖𝑛𝑛𝑒𝑟 , 𝑁𝑖𝑛𝑛𝑒𝑟 , 𝐴𝑖𝑛𝑛𝑒𝑟 ) respectively, the flattened
loop then has scheduling constraints (𝑃𝑖𝑛𝑛𝑒𝑟 , 𝑙𝑖𝑛𝑛𝑒𝑟 , 𝑁𝑖𝑛𝑛𝑒𝑟 ×
𝑁𝑜𝑢𝑡𝑒𝑟 , 𝐴𝑖𝑛𝑛𝑒𝑟 ). Finally, if a loop with scheduling constraints
(𝑃, 𝑙, 𝑁 ,𝐴) is unrolled, the scheduling constraints after the
transformation are (1, 𝑁 × 𝑙, 1, 𝑁 ×𝐴).

To formulate the extraction, let 𝐸 denote the set of all pro-
gram representations in the e-graph. SEER assigns a latency,
𝐿(𝑛), to each e-node, 𝑛:

𝐿(𝑛) =
{
(𝑁𝑛 − 1) × 𝑃𝑛 + 𝑙𝑛, if 𝑛 is a loop
0, otherwise,

(2)

where we denote the scheduling constraints of a loop node
𝑛 by (𝑃𝑛, 𝑙𝑛, 𝑁𝑛, 𝐴𝑛). A completely unrolled loop is still con-
sidered a loop with an iteration count of 1 to avoid zero cost
during the extraction. The if statements are extracted based
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on the data path cost function. The objective for control flow
extraction is then to minimize the sum of loop latencies.

min
𝑒

∑︁
𝑛∈e

𝐿(𝑛)

s.t. 𝑒 ∈ 𝐸

(3)

We use a greedy extraction method for control flow, select-
ing the lowest cost loop implementation in each control flow
e-class. Since data path nodes are considered zero cost at this
stage, control flow extraction returns a subset of representa-
tions 𝐸′ ⊆ 𝐸, that all share the same optimized control flow.
SEER must now select an efficient data path implementation
from these remaining implementations.

For the data path, SEERminimizes area rather than latency,
as operation latencies are often hidden by loop pipelining.
SEER leverages an existing cost function from ROVER to
extract the minimal circuit area expression in each block [10].
ROVER assigns an area cost, 𝐴(𝑛), to each e-node, 𝑛, based
on a bitwidth-dependent gate count. The objective for data
path extraction is then:

min
𝑒

∑︁
𝑛∈e

𝐴(𝑛)

s.t. 𝑒 ∈ 𝐸′
(4)

In ROVER, data path extraction is formulated as an integer
linear programming (ILP) problem [10, 54], solved using the
Coin-Or CBC solver [19]. The ILP returns a single SeerLang
representation, which is passed to the SEER back end.

4.7 Verification
Our work benefits from SEER orchestrating existing trans-
formation passes for super-optimization exploration. How-
ever, these passes may be unverified and could introduce
non-equivalent representations. In hardware design formal
verification increases trust in the correctness of an imple-
mentation. We adopt a translation validation approach based
on the egg proof production feature [18]. SEER traces back
the intermediate forms to the original program from the ex-
tracted representation, generating SystemC for each step that
differs from the previous step by a single rewrite. SEER then
generates a sequence of equivalence checks, constructing a
sound chain of reasoning that the original and generated pro-
grams are functionally equivalent. Each intermediate check
is proven using a commercial equivalence checker. By decom-
posing the verification problem into a sequence of simpler
sub-problems, SEER provides a robust verification flow. In
this paper, we focus on the optimization capabilities of SEER,
but a detailed discussion on verification using e-graphs is
provided in Section 6.3.

5 Experiments
We evaluate SEER on a set of benchmarks. We compare SEER
with a vanilla commercial HLS tool for ASICs and the data
path optimizer ROVER [10], as a hardware optimizer that

also uses e-graphs. We do not compare against the related
works [59, 62] mentioned in Section 3.3 since they target
FPGAs and we target ASICs.
We assume that the designer has no hardware knowl-

edge. To ensure fairness, we synthesize the original, ROVER-
generated, and SEER-generated programs using the same
HLS configuration.We evaluate the impact of SEER on circuit
area, performance in wall clock time and power. The total
clock cycles were obtained from the HLS co-simulation. The
area and power results were obtained from the Post & Route
report from the HLS tool. We targeted a 45nm technology
library.

5.1 Benchmarks
Finding suitable benchmarks is a perennial problem for pa-
pers that push the limits of HLS, in part because existing
benchmarks tend to be tailored to what HLS tools can already
comfortably handle. In this work, we combine artificially con-
structed, Intel provided and open-source benchmarks from
the MachSuite [43] set. SEER is amenable to programs with
complex data path blocks, control flow, or memory access
patterns. In this work, we include the subset of MachSuite
benchmarks (8 out of 19) for which current HLS tools are un-
able to achieve the optimal results. For the remaining bench-
marks in MachSuite, HLS tools are already able to match
expert human designers. The selected benchmarks imple-
ment algorithms as low-level kernels suitable for hardware
acceleration.We aim to evaluate SEER on super-optimization
for 1) different application programs and 2) different imple-
mentations of the same application program using different
algorithms. We use the following benchmarks:

seq_loops represents the sequential loop example shown
in Figure 9, amenable to loop fusion.
byte_enable_calc pre-processes and combines multiple
messages into one. Widely used in computer architectures.
kmp is an implementation of the Knuth-Morris-Pratt algo-
rithm [24] for string matching.
gemm (ncubed/blocked) is a naive/blocked implementa-
tion of dense matrix multiplication. The ncubed algorithm
is unoptimized and has a complexity of𝑂 (𝑛3). The blocked
algorithm [31] provides better locality.
md (grid/knn) simulatesmolecular dynamics usingN-body
methods to compute local forces. The grid implementation
uses spatial decomposition from polyhedral transforma-
tions. The knn implementation was originally from the
SHOC benchmark suite [14] and uses K-nearest neighbors.
sort (merge/radix) sorts an integer array. Merge uses
the merge sort algorithm [9], and the radix implementation
compares 4-bits blocks at a time.

seq_loops is made artificially to demonstrate a simple ex-
ample, and byte_enable_calc is production code provided
by Intel. The rest of the benchmarks are directly obtained
from the MachSuite [43] benchmark set.
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1 for (j=1; j<4; j++) {
2 for (i=0; i<4; i++) { 1○
3 if (list[j][i]
4 && enable[i] 2○) 3○
5 { 4○
6 sum ++;
7 enable [0] = false;
8 enable [1] = false;
9 enable [2] = false;
10 ennable [3] = false; 6○
11 }
12 if (list[j][i]) 5○
13 enable[i] = true;
14 }
15 }

Figure 12. byte_enable_calc
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Figure 13. Normalized results of hardware designs for byte_enable_calc and
seq_loops using different approaches compared to the baseline results of hardware
designs from original programs. The results by ROVER-only on byte_enable_calc
are the same as the baseline. The text represents the normalized area-delay products.

5.2 Intel Production Code Case Study
We first provide a case study of applying SEER to a snippet of
unoptimized Intel production code, shown in Figure 12. The
source code implements a resource combining algorithm.
It is commonly used as write combination logic, as part of
a larger state machine aiming to maximize bus traffic. The
example uses the minimization of bus accesses as a criteria
and uses the bits to track these resources. Due to the time
critical nature of these kind of resource management state
machines the logic needs to be quick so that any decisions
on dispatch can be made in few clock cycles.

TheHLS tool cannot synthesize efficient hardware because
of the data dependence on enable across loop iterations. The
control path shown as if statements are also unnecessary
and are challenging for the tool to interpret. The following
are potential optimization opportunities:

1○ Loop Unroll: The iteration counts of both loops are small.
It may be beneficial to unroll the loops for more data
parallelism at low area overhead.

2○ Memory Forward: There are multiple load and store op-
erations to enable. These operations could be folded to
reduce data dependence on enable.

3○ If Correlation: When the loop is unrolled, the if conditions
in different loop iterations may be correlated as shown
in Figure 10.

4○ If Conversion: The true branch of the if statement at line
13 is a single line and could be rewritten as a multiplexer.

5○ Mux Reduction: The same true branch updates a single
bit using a constant, which could be directly fetched from
the if condition. The same applies to lines 7-10.

6○ Gate Reduction: The logic expressions in the loop body
could be simplified once folded into a single data path
using the transformation steps above.

Table 3. Case study on the byte_enable_calc bench-
mark. SEER (C) only explores control path optimizations.
SEER (Manual) explores the manually optimized source code.
CP = Critical Path. ET = Execution Time. PPA = Performance
Power Area product.

Approaches Area
(𝜇m2) Cycles CP

(ns)
ET
(ns)

Power
(mW)

PPA
(𝑦𝑊 ·𝑚2 · 𝑠)

Baseline 1.94 119 0.976 116 0.49 110
ROVER 1.94 119 0.976 116 0.49 110
SEER (C) 1.44 81 1.09 87.9 0.475 60.4
SEER 1.36 29 0.831 24.1 0.51 16.7
Manual 1.33 42 0.831 34.9 0.552 25.6
SEER (Manual) 1.44 34 0.976 33.2 0.44 20.8

The results for the code in Figure 12 are shown on the
left of Figure 13. In the figure, smaller values indicate better
results. In addition to the results obtained from the original
program and SEER, we also obtained the results from the
manually optimized design by Intel hardware experts. Fur-
thermore, we gave the manually optimized design to SEER.
We made the following observations:

• ROVER could not optimize the input program because
the data paths are separated by control operations.

• Exploring MLIR passes (SEER (C)) improves perfor-
mance and area, due to the conversion of control path
operations to data path operations and memory for-
warding.

• By combining ROVER rewrites and MLIR passes SEER
achieves significantly better performance improve-
ments and area reduction. The performance of SEER-
generated hardware even outperforms the manually
optimized hardware design with a small area over-
head.
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Table 4. Evaluation of SEER over a set of benchmarks. Area in 𝜇m2. Total Cycles in 1000’s. Critical Path in ns. Power in mW.

Benchmarks Baseline ROVER SEER

Area Total Cycles Critical Path Power Area Total Cycles Critical Path Power Area Total Cycles Critical Path Power

seq_loops 1.77 1.5 0.943 0.224 1.61 1.6 0.943 0.268 2.42 0.203 0.883 0.238
kmp 8.09 357 1.53 0.581 8.09 357 1.53 0.581 7.72 292 1.42 0.546
gemm (blocked) 14.4 4620 1.16 0.735 14.4 4620 1.16 0.735 16.3 537 1.11 3.44
gemm (ncubed) 11.8 3410 0.971 0.972 11.8 3410 0.971 0.972 12.7 535 0.971 5.83
md (grid) 132 1480 1.55 2.31 132 1480 1.55 2.31 180 346 1.54 5.07
md (knn) 107 303 1.19 2.34 107 303 1.19 2.27 127 8.25 1.14 1.62
sort (merge) 26.4 238 1.42 1.56 26.4 238 1.42 1.56 14.8 153 1.24 1.36
sort (radix) 10.8 223 1.39 0.262 10.8 223 1.39 1.06 9.05 136 1.28 1.02

Norm. Geom. Mean. 1× 1× 1× 1× 0.99× 1.01× 1× 1.4× 1.06× 0.34× 0.95× 2.54×
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Figure 14. Normalized results for the SEER generated programs compared to the vanilla HLS programs, across the key
hardware efficiency metrics for the benchmarks evaluated. The text represents the normalized area-delay products.

• SEER achieves the best hardware results among auto-
matically generated designs, and SEER even optimizes
the manually optimized hardware design by hardware
experts, pushing the limit in both performance and
area.

The detailed results for byte_enable_calc are shown in
Table 3. We also observed similar results for benchmark
seq_loops, in the left of Figure 13:

• Exploring ROVER optimization only achieves area
reduction in the data path.

• Exploring MLIR passes only (SEER (C)) achieves per-
formance improvements with area and power over-
head.

• Exploring both ROVER and MLIR passes with SEER
achieves the best performance with less power over-
head due to the interaction between ROVER rewrites
and MLIR passes, which enables more optimization
opportunities.

5.3 Overall Results
The improvements on other benchmarks are shown in Fig-
ure 14, and the detailed results are shown in Table 4. SEER
has achieved better performance for all the benchmarks by
enabling automatic loop pipelining. The HLS tool cannot

auto-pipeline loops without human guidance. Loop pipelin-
ing also causes additional area and power overhead. Overall,
the PPA for most benchmarks is improved. In the case of the
sort (radix) benchmark, the loop has a small trip count,
so loop pipelining only provides marginal performance im-
provements at significant power overhead. Since our cost
functions do not consider power, SEER only focuses on per-
formance and area. This potentially introduces inefficient
power in the final hardware design. In Figure 14 we highlight
the normalized area-delay products to show the effectiveness
of SEER on the design metrics explored. On average, SEER
achieved a speedup of 2.9× with 0.06× area overhead, and a
PPA of 8.9× the original design.

Figure 15 compares the hardware produced by SEER and
the hardware obtained by manually inserting pragmas into
the unmodified source code. The commercial HLS tool has
a set of pragmas to direct some of the transformations ex-
plored by SEER, that were described in Section 4.3. There
are pragmas to instruct the HLS tool where to apply the loop
pipeline and the loop fusion transformations. The HLS tool
also has a pragma to direct the loop coalesce transformation,
which is a more capable version of the loop flatten transfor-
mation described in Section 4.3. The loop flatten in SEER can
only flatten perfect loop nests, while the loop coalesce in the
HLS tool can flatten more complex loop nests. Finally, if con-
version and memory forwarding are automatically performed
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Figure 15. Normalized results for the SEER generated programs compared to HLS programs with manual pragma insertion but
no source code modifications, across the key hardware efficiency metrics for the benchmarks evaluated. The text represents
the normalized area-delay products.

Table 5. The size of the e-graphs and total search times for
the evaluated benchmarks.

Benchmarks Nodes Time in
MLIR (s)

Time in
egg (s)

Total
Time (s)

byte_enable_calc 31769 0.65 160.35 161
seq_loops 11906 0.29 0.01 0.3
kmp 504 0.54 2.05 2.59
gemm (blocked) 10947 3.96 16.24 20.2
gemm (ncubed) 114 0.88 0.42 1.3
md (grid) 44328 5.03 56.37 61.4
md (knn) 43580 0.37 51.83 52.2
sort (merge) 310 0.52 2.07 2.59
sort (radix) 273 1.38 1.12 2.5

by default. Users with deeper hardware knowledge can use
pragmas to instruct the commercial HLS tool to perform
logic synthesis level optimizations. These pragmas were not
explored in these experiments as such optimizations are be-
yond the scope of SEER which targets only control path and
data path optimization.
In Figure 15, SEER achieves better results than manually

inserted pragmas for most of the benchmarks, because it
contains transformations that cannot be expressed by prag-
mas, such as memory reuse and if correlation. The pragmas
provided by the HLS tool cover certain transformations that
are currently not covered by SEER, such as loop coalesce. For
example, the HLS tool coalesces all loops in md (grid) into
a single loop for efficient hardware pipelining, while the
MLIR passes in SEER lack the necessary steps to coalesce all
loops, leading to a worse latency. We expect that SEER will
match or even outperform manual pragma insertion once it
has the same set of transformations as the HLS tool.
The size of e-graph and exploration time for each bench-

mark are shown in Table 5. The MLIR runtimes are generally
smaller than the time spent in egg, because the space of
equivalent data path implementations can be large and the

final extraction can be computationally expensive. Bench-
marks that have complex loop structures, such as bench-
marks gemm (blocked) and md (grid), contain more pat-
terns for MLIR transformations, leading to a larger explo-
ration space and longer MLIR runtime.

The scalability problem is an open challenge in both super-
optimization and equality saturation. In hardware design,
the modular design principles greatly help to limit the size
and scope of optimization. In addition, the bar for compile
times is set low for hardware compilation, meaning users
are willing to wait for quality results.

6 Related Work
6.1 Phase-Ordering Challenges in Compilers
The phase-ordering problem in compilers has been addressed
using two main approaches. First, there are works that use
machine learning [2, 3, 21, 29, 40] for inferring a productive
sequence of optimization steps. These approaches only work
for domain-specific programs, while our approach works
for arbitrary programs. Second, there are works that use
heuristic-based or iterative approaches for efficient search-
ing for the optimization steps [28, 41, 60]. The intermediate
traces during the iterations are not efficiently preserved,
while our work carries it in the e-graph during the explo-
ration. All these approaches only target software optimiza-
tion, while our approach targets hardware optimization.

6.2 MLIR HLS Frameworks
In addition to SEER, there have been several attempts to
build hardware design tools using the MLIR framework.
CIRCT [8] is an MLIR-based hardware compiler framework
under LLVM, which lowers MLIR to register-transfer level
(RTL) code as an open-sourced HLS tool. Xu et al. propose
a specific MLIR dialect named HECTOR for hardware syn-
thesis [57], which can be translated into RTL code. There
are also source transformation tools that transform MLIR
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into optimized HLS code in C [30, 59] or LLVM IR [1, 62].
Both these works and SEER have an end-to-end HLS flow in
MLIR. Prior work suffers from the phase-ordering problem
illustrated in Figure 1 because they use a fixed sequence of
transformation passes. SEER overcomes the phase-ordering
challenge using e-graphs, customizing the MLIR pass order
for each input program and optimization objective.

6.3 Optimization and Verification using E-Graphs
Lastly, the egg library has fueled a new wave of e-graph re-
search. E-graphs were first used to explore programs contain-
ing loops in [50], where the authors introduced 𝜃 nodes to
represent values that vary inside of a loop within an e-graph.
This representation was used to implement a Java bytecode
optimizer [50]. In addition to performance optimization, e-
graphs have also been applied to automate numerical stabil-
ity improvement [42], andmuchmore [38, 45, 53, 58]. Beyond
applications, there has been some work to address scalability
issues via sketch-guiding [25]. In the hardware domain, there
is growing interest, with Ustun, Yu and Zhang advocating
e-graph rewriting [52] and applying it to multiplier design
for FPGAs [51].
The set of representations maintained by an e-graph has

also been leveraged to improve verification. Specifically, it is
possible to extract rewrite sequences that justify the equiva-
lence of two representations found in the same equivalence
class. This technique is known as proof production [18].
These rewrite sequences can then be checked. In the soft-
ware domain, an e-graph optimization tool [50] was adapted
to perform translation validation of LLVM optimizers [47].
More recently, egg was used to develop an RTL datapth
equivalence checking assistant [13], where the problem de-
composition approach described in Section 4.7, facilitated
proof convergence and reduced verification runtimes.

7 Conclusion
This paper described an approach to resolving the phase-
ordering problem for HLS. By simultaneously exploring op-
timizations at different granularities in an e-graph, our ap-
proach opens up a larger optimization space for an arbitrary
program than existing HLS works. We demonstrated how
high-level control optimizations and low-level data path op-
timizations can mutually benefit, enabling further optimiza-
tion opportunities. We model the hardware performance for
the control path at a software abstraction level and determine
efficient HLS code for high throughput and area efficiency.

We implemented a toolflow, SEER, that uses an e-graph to
orchestrate high-level software optimizations in MLIR and
low-level hardware optimizations in ROVER. We introduced
a new intermediate language, SeerLang, that interfaces the
egg library and MLIR. We evaluated SEER on open-source
benchmarks and an Intel-provided case study, demonstrating
an average speedup of 2.9× with minimal area overhead.

Our future work will involve several directions. First, from
the programming language point of view, we plan to improve
SeerLang for deeper integration with MLIR and egg for effi-
cient translation. For instance, we plan to investigate how
complex constructs, such as function calls and global vari-
ables can be optimized in SEER. This would also resolve some
engineering challenges since most MLIR passes target entire
functions rather than local transformations. Second, we plan
to extend the exploration space and granularities by integrat-
ing optimization techniques from other MLIR projects, such
as CIRCT [8] and POLSCA [62]. We will investigate parallel
e-graph exploration using multiple threads to improve scala-
bility. Further efficiency gains could be made by partition-
ing the e-graph and exploring different sub-graphs indepen-
dently. Lastly, we will evaluate SEER on larger benchmarks
to understand the practical limitations of the approach.
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