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Abstract
Dataflow high-level synthesis (HLS) tools automatically map a
high-level software program to a dataflow hardware design. When
testing the design, the HLS tool takes a testing function written in
the same software language and translates it into the corresponding
hardware testbench for cycle-accurate simulation. However, the
generated testbench only follows a fixed schedule to feed inputs and
collect outputs, without considering external dynamic behaviors
of the test data (also known as latency insensitivity testing). Over-
looking these test cases could miss bugs introduced by the designer
that occur in certain events, such as late input arrival and output
backpressure, leading to higher debugging costs. In this paper, we
present an HLS testing toolflow named PEDIA that automatically
generates testbenches to detect latency insensitivity bugs. We ex-
pand the test space from varying input values to varying input
delays. PEDIA automatically determines an efficient test space of
input delays based on the HLS schedule for better scalability; and
tests the HLS design on a parallel hardware testing platform for
high performance. Over two representative sets of existing bench-
marks, we show that PEDIA can help identify potential bugs missed
by existing approaches and achieves an average speedup of 4.53×
on running 1500 test cases.

CCS Concepts
• Hardware→ High-level and register-transfer level synthe-
sis; Hardware test.
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1 Introduction
Dataflow high-level synthesis (HLS) tools automatically translate
a high-level software program, written in a language like C/C++,
into a custom dataflow hardware accelerator, often represented in
Verilog/VHDL. They abstract away low-level hardware details from
designers, such as instantiating handshake interfaces, scheduling
and re-timing, allowing them to focus on architecture exploration
with minimal development effort. Many HLS tools today support
dataflow HLS, such as through the ‘dataflow’ directives and the
‘hls_stream’ library in AMD Xilinx Vitis HLS [1], the front-end
library in RapidStream TAPA [20], the ‘stream_in’ struct in the Intel
HLS compiler [26] and the Dynamatic HLS tool from EPFL [28].

Testing is crucial in HLS developments to ensure that the au-
tomatically generated hardware meets its specifications and func-
tions correctly. Existing research focuses on HLS translation equiv-
alence [22, 23, 46] but cannot detect design bugs. For example, a
designer may introduce bugs by mistakenly writing an incorrect
HLS function or directive. To detect such issues, HLS tools automat-
ically generate hardware testbenches from a user-defined testing
function, typically written in the same language as the HLS pro-
gram. The testbench is used to perform cycle-accurate simulations
for the generated hardware design. The same HLS program and
the user-defined testing function are also simulated as a sequential
software program using standard software compilers like GCC,
running on identical inputs at the behavioral level. The results of
both the hardware and software simulations are then compared to
identify any discrepancies, indicating potential design bugs.

However, the above testing method could still miss bugs in
dataflow HLS designs. A major limitation is that existing HLS test-
benches [1, 28] do not test dynamic data arrivals around the design,
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1 // Given:
2 // b may be late
3 // and delay
4 // g by at most
5 // one cycle
6
7 void hls_ip(
8 stream_t &sel ,
9 stream_t &a,
10 stream_t &b,
11 stream_t &r) {
12 stream_t d0,d1;
13 stream_t o0,o1;
14
15 branch(sel , a,
16 d0, d1);
17 o0 = f(d0);
18 o1 = g(d1, b);
19 merge(o0, o1,
20 out);
21 }

(c) Vitis HLS source
of the circuit in (b).

HLS Design
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leading to a full pipeline.
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(g) Untested schedule leads to an er-
ror because of the out-of-order data
sequence of r.

Figure 1: A motivating example of testing an optimized dataflow circuit by the designer. The circuit schedule depends on both
the values and arrival times of its inputs, and needs to be both tested. Existing HLS testing only varies the data values in a fixed
schedule and leaves other data schedules untested. This may miss bugs such as out-of-order output arrivals.

also known as latency insensitivity testing. Instead, they always
assume the absence of late input arrival and output backpressure.
However, in a dataflow design, a delayed input may lead to a differ-
ent hardware state. For example, the hardware design may stall part
of its operators waiting for a late input to arrive or a backpressure at
its output to be resolved at run-time, leading to a dynamic schedule.
Although the HLS tool automatically schedules the design to meet
the given specifications, designers could still introduce timing bugs.

Verifying a dataflow HLS design and finding potential bugs re-
main non-trivial tasks. There are two main challenges: 1) HLS
language expressiveness and 2) testing scalability. First, both HLS
programs and their testbenches are expressed in a cycle-insensitive
programming language. HLS tools automatically schedule the start
times of operations into clock cycles. However, the generated test-
bench is independent of the HLS schedule, making it difficult to
capture cycle-sensitive behavior. Prior work [15, 15, 42] exploits the
HLS schedule to accelerate testing but still misses tests on latency
insensitivity. Typing systems [17, 37, 38] have also been studied
to ensure latency insensitivity of an HLS design, however, they
only support designs with fixed latencies. Second, the test space
scales combinatoriallywith both input values and their arrival times.
The delay of an input could also be infinite, making it impossible
to fully explore the test space. The existing testing approach re-
quires designers to manually implement a hardware testbench and
restrict the test space using heuristics, by for example using the
Universal Verification Methodology (UVM) [21, 25]. In this work,
we seek a general and efficient solution to automatically detect
latency insensitivity bugs in dataflow HLS designs.

In this paper, we present a testing framework named PEDIA
(Parrallel Emulation of Dynamic Input Arrivals) for dataflow HLS
designs. Given an HLS program and its HLS testbench, PEDIA
automatically determines an efficient test space with dynamic test
data behaviors and detects latency-insensitivity design bugs. Our
main contributions are as follows:

• an end-to-end toolflow that automatically detects latency
insensitivity bugs for dataflow HLS designs;

• an automated pass to generate an efficient hardware testing
platform on an FPGA that run multiple test cases for an HLS
design in parallel;

• a technique that exploits static analysis on the HLS schedule
and determines an efficient test space for an HLS design by
removing redundant test cases; and

• PEDIA shows better bug detection in latency insensitivity
testing compared to existing HLS testbenches, and achieves
an average speedup of 4.53× (including FPGA synthesis time)
compared to commercial simulators.

2 Motivating Example
We now demonstrate our approach through a motivating example.
Figure 1a illustrates a dataflow circuit, where each edge represents
a handshake interface. The circuit computes the function f or g on
an input a depending on the condition sel and returns a result r.
This is achieved by a branch that sends a to one of its outputs and a
mux that selects one of the outputs from f and g to its output, both
controlled by sel. This design pattern is commonly seen in larger
dataflow systems, such as sparse matrix accelerators [28] and neural
network accelerators with early exits [11]. For simplicity, f and g
have the same latency, but g requires an additional input b, which
may not arrive at the same time as a. The circuit is fully pipelined,
so f and g can be computed in parallel. The latency insensitivity
requires r to be in the same order as a. To ensure this, the fork
duplicates the branch condition and feeds it to a FIFO to track the
branch choices. This is used to select r between the outputs of f and
g to reconstruct the input order of a. This implementation works
for any data values and arrival times, but could lead to a large area
because the size of the FIFO scales with the pipeline depth of f and
g. For example, the FIFO costs 46551 LUTs when f is fully pipelined
with a latency of 1000 cycles.
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Table 1: PEDIA is the first attempt at automated hardware-accelerated latency insensitivity testing for HLS.

Vitis HLS
[1]

Dynamatic
[28]

Stratus
[3]

BlueCheck
[36]

FastSim
[5]

FLASH
[15]

LightningSim
[42]

ENCORE
[44]

FireSim
[29] Our work

Platform CPU CPU CPU CPU CPU CPU CPU FPGA FPGA FPGA
Parallel testing ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓
Hardware acceleration ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓
HLS abstraction ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✓
Latency insensitivity ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✓
Test case reduction ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

C/C++ Verilog/SystemVerilog/VHDL
HLS Tools

C/C++ LLVM IR
Pedia Front End

2 LLVM IR

HLS Scheduling Information

1

Test Case Reduction

SystemVerilog

Hardware Mapping

4

DRAM Data
Test Case Scheduling & Data Packing

5

Results

Deployment

Snapshot 

7

Simulation on CPU
(for interactive debugging)

3

8
HLS Design

HLS Testbench bitstream

Synthesis & Implementation

6

(Section 3.4) (Section 3.3)

(Section 3.2)

(Section 3.5)

(Section 3.5)

Figure 2: An overview of the PEDIA toolflow. Our contributions are highlighted.

An alternative implementation related to the optimization in-
spired by Elakhras et al. [18] is illustrated in Figure 1b and its
implementation using Vitis HLS is in Figure 1c. In the optimized
circuit, the mux is replaced by a merge, and the FIFO is removed,
leading to a smaller area. A merge checks its inputs in a fixed order
(always checking g before f in this case) and sends the first valid
input found to its output. The circuit may still be correct under
constrained input values and arrival times. For example, assume
b may be late and delay g by at most one cycle. This is common
when loading b from the off-chip memory or an external circuit
that gets stalled. The computation is still correct as illustrated in
Figure 1e and Figure 1f. However, further delaying b could cause
errors, such as r being out of order in Figure 1g.

It is designers’ responsibility to verify their HLS design’s correct-
ness under their target use cases. Designers often rely on hardware
simulations to detect design bugs. Existing HLS tools, such as Vi-
tis HLS [1] and Dynamatic [28], generate a testbench as shown
in Figure 1d. The HLS design is the device under test (DUT), and
connected to three input buffers and an output buffer, both sized
sufficiently to hold all the data. The test inputs are all initialized
in these input buffers. This leads to a fully pipelined schedule of
DUT, also known as the ‘best-case schedule’, as shown in Figure 1e.
However, other schedules such as those in Figure 1f and Figure 1g
cannot be tested because the input and output buffers are always
ready to feed and consume data, respectively.

The absence of these test cases prevents the designer from verify-
ing customized optimizations on their HLS hardware. For example,
Figure 1f verifies whether the merge is checking its inputs in the
right order, otherwise the results may be wrong. The designer may
also input wrong specifications for their use cases, leading to an un-
expected schedule, as in Figure 1g. In order to capture such design
bugs, PEDIA automatically generates a custom testing platform for
an HLS design and tests with dynamic data arrivals. Both the input
values and arrival times affect the behavior of the DUT, leading

to a combinatorially growing test space. This makes existing HLS
testing that sequentially runs test cases on a CPU no longer scalable.
PEDIA addresses this by mapping test cases to an FPGA-based hard-
ware testing platform, leveraging spatial data parallelism among
similar test cases for high performance.

Problem Formalization
A key novelty of our work is that PEDIA expands the existing HLS
test space from data values to data schedules. Let 𝐷 be the set of
all possible test inputs and 𝑇 be the set of all possible schedules
for an HLS design. The complete test space is then 𝐷 ×𝑇 . Given
user-defined inputs 𝐷′ ⊆ 𝐷 , existing HLS testbenches test 𝐷′ ×𝑇 ′,
where 𝑇 ′ ⊆ 𝑇 are the schedules without late input and output
backpressure. PEDIA generates a testbenchwith a test space𝐷′×𝑇 ′′,
where 𝑇 ′ ⊆ 𝑇 ′′ ⊆ 𝑇 . In the rest of the paper, we show how to
determine an efficient 𝑇 ′′ and explore it in parallel.

3 Methodology
PEDIA is an independent toolflow on its own hardware testing
platform for general HLS designs including non-dataflow ones.
When testing a non-dataflow HLS design, PEDIA works the same
as existing HLS testbenches because the HLS design follows a static
schedule. Similar to other HLS testing frameworks [1, 28], PEDIA
requires both the HLS program and the corresponding testbench
as its input. The front end of PEDIA reuses existing Vitis HLS
testbench syntax to save effort in rewriting existing HLS tests.
Figure 2 illustrates a high-level overview of the PEDIA toolflow.

1○ The traditional synthesis flow of an HLS tool takes an HLS
program and automatically generates a functionally equivalent
hardware design. The HLS tool also generates a scheduling
report that describes the hardware states of the HLS design.

2○ PEDIA accepts inputs in C, C++, and other programming lan-
guages that can be translated into LLVM IR. Here, we parse the
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output HLS design in parallel. SU = stalling unit.

C / C++ input using Clang [35] for prototyping. Designers can
optionally add cycle-sensitive constraints in custom pragmas
to test special use cases, described in Section 3.3.

3○ A test space is constructed from the PEDIA testbench, and
further optimized by static analysis on the HLS schedule to
remove redundant test cases, described in Section 3.2.

4○ A custom hardware testing platform is generated to runmultiple
test cases in parallel, described in Section 3.1.

5○ PEDIA schedules both test cases for efficient acceleration, fully
exploiting the available resources, described in Section 3.2.

6○- 7○ The testing platform is deployed on an FPGA and computes like
a hardware accelerator.

8○ The intermediate states during hardware testing on an FPGA
are not directly accessible. PEDIA provides an interactive de-
bugging interface through the snapshot of the testing platform,
described in Section 3.4.

3.1 Hardware Testing Platform
We now describe our hardware testing platform for latency insen-
sitivity testing. Given a combinatorially growing test space, we
choose to test on a hardware-accelerated platform in order to run
test cases at high performance and in parallel. The architecture
of the hardware platform faces two design choices. First, it could
follow the same architecture in Figure 1d, where all the test data
is stored on-chip and fed into the DUT. However, this may not be
amenable for designs that require a large memory size, such as
systolic arrays. Also, the scheduler for each test case needs to be
customized, leading to a scalability challenge. Second, the testing
platform could also be a large dataflow system with the DUT in
the loop. This architecture lifts the restriction on on-chip memory
size by streaming and can be generalized to all test cases by vary-
ing component configurations at run time. We choose the latter to
maximize the generality our approach.

The main design goal of the proposed platform is that the testing
process can scale efficiently to thousands of test cases. First, the
general platform architecture accepts arbitrary HLS designs, only
handling their interfaces such as BRAM and handshake. Second,
the simulated delay must be software reconfigurable between test

data

data
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ready
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-

threshold

(a) Probability-based mode

pattern data

data

ready

ready

valid

valid

ring 
counter

(b) Pattern-based mode

Figure 4: Stalling units (SUs) configured in two modes.

cases in the same hardware architecture, leading to a short recon-
figuration time and avoiding repeated FPGA synthesis. Finally, the
control granularity on the simulated delay can target both average
and cycle-accurate behavior.

3.1.1 Stalling Units. PEDIA maps the simulation of the test cases
onto an FPGA using a custom hardware platform for acceleration,
as illustrated in Figure 3. The right of the figure shows a single test
case, mapped into a test instance. A test instance contains a copy
of the HLS design as the DUT, connected its inputs and outputs to
stalling units (SU). An SU does not change data values, but blocks
them to simulate delay events, such as late input arrival or output
backpressure. The delay behavior of each SU is reconfigured by the
hardware scheduler at the beginning of each iteration.

The detailed implementation of an SU is demonstrated in Fig-
ure 4. A single SU can be configured in two modes, where we show
their circuit designs separately for simplicity. First, the probability-
based SU, shown in Figure 4a, generates pipeline stalls based on a
probability and a seed, set to 0.5 and 0 by default, but both could
be customized by the designer. The delay behavior is determined
by a linear feedback shift register (LFSR) and a constant threshold
determined by the given probability. The generated number below
the threshold leads to the data being blocked in the next clock cycle.
This simulates pipeline stalls with a probability 𝑝 , approximated
by the following, where 𝑏 is the bitwidth of the LFSR register.

𝑝 ≈ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

2𝑏 − 1
(1)

Figure 4b shows the pattern-based SU, which generates pipeline
stalls following a user-defined schedule. The schedule is stored in a
bit vector, and each bit indicates an SU state in a specific cycle. A
ring counter enumerates these bits periodically and blocks the data
in the next clock cycle if the current bit is 0. In comparison, the
probability-based SU provides uncertainty, enabling designers to
fuzz on different test cases to detect potential bugs; and the pattern-
based SU allows designers to have cycle-accurate controls of the
test case and perform verification on a specific test case.

3.1.2 Test Case Parallelism and Isolation. At the top level on the left
of Figure 3, the test data is stored in DRAM for better scalability, and
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accessed via the AXI interface at run-time. The hardware resources
of an FPGA are often sufficient to run multiple test cases in parallel,
where each test instance checks a specific test case. For example,
three test instances are running in parallel in Figure 3. All the purple
edges are handshake interfaces, making the testing platform a large
dataflow hardware accelerator. A hardware scheduler initiates the
process by fetching testing configurations and applying them to SUs
to simulate data delays. In each iteration, these test instances run on
the same test data but have different SU configurations to simulate
different test cases. Sharing the same data reduces the available
memory bandwidth restriction while preserving high parallelism.
The test data is replicated and distributed to each test instance using
the fork component. The output values from different instances
are expected to be identical. They are compared using hardware
comparators. Any mismatch will return a fault signal to the system,
indicating an error. An iteration finishes when the slowest instance
finishes, synchronized by the join component. The join component
also sends a copy of the results to the host for comparison with the
golden reference. The testing iterations are carried out sequentially.

A key design constraint of the testing platform is that the com-
putation of these test instances must be independent and all the
stalls must be controlled by the SUs. For example, a test instance
may send backpressure to the fork, which stalls other instances
at the outputs of the fork, leading to a mismatch between actual
data arrival and test constraints. To avoid interference between
parallel test cases, buffers are inserted around the SUs, as shown
in the right of Figure 3, to balance the throughput between the
external components and the SUs. A sufficient buffer depth must be
determined to ensure the absence of backpressure. A large buffer
may lead to low area efficiency, while a small buffer may cause
mismatched test results. PEDIA applies static analysis on the HLS
schedule and sets the buffer size for an interface to 2𝑑 , where 𝑑
satisfies both the following constraints.

𝑁 − 𝑑

𝜃ext
≤ 𝑁

max𝜃hls
(2)

𝑁 − 𝑑

min𝜃hls
≤ 𝑁

𝜃ext
(3)

Constraints 2 and 3 describe buffering and prefetching, respectively.
𝑁 is the total value count for a test case. 𝜃ext is the throughput of
an external component, such as a fork or a compare in Figure 3.
𝜃hls is the throughput of the HLS interface. For an HLS design with
dynamic throughput, PEDIA takes the minimum and maximum
throughput values from the HLS scheduling report for the above
analysis. The interface throughput also depends on the delays in
its SU. We also focus on the maximum and minimum delays of
an SU among all test cases for estimating 𝜃hls. Still, 𝑑 only reflects
the average case, so we approximate the buffer size to 2𝑑 and add
hardware checks at each buffer interface to detect any unexpected
stalls at run time, leading to an invalid flag at the end of the test. In
our experiments, we observed that 2𝑑 is sufficient to balance the
throughput over all the benchmarks.

The combination of configurations among many SUs opens up a
large test space, covering diverse input arrivals and output back-
pressure. However, the test space size grows combinatorially due
to the increasing number of potential delays, making a naive ex-
haustive search approach impractical. In the next section, we will

C8C7C6C5C4C3C2C1

II = 2 L = 4
N = 3

op1(1) op2(1) op3(1) op4(1)
op1(2) op2(2) op3(2) op4(2)

op1(3) op2(3) op3(3) op4(3)

(a) A schedule of a fully-pipelined loop.
C11C10C9C8C7C6C5C4C3C2C1

L = 4
N = 3

Redundant states

op1(1) op2(1) op3(1) op4(1)
op1(2) op2(2) op3(2) op4(2)

op1(3) op2(3) op3(3) op4(3)
stall0 stall1 stall2

(b) A schedule of the pipelined loop with pipeline stalls.

Figure 5: The schedule of a pipelined loop in an HLS design.
The red arrows represent the dependence between two op-
erations, and the red bubbles represent run-time pipeline
stalls.𝑁 = loop trip count. II = initiation interval. 𝐿 = iteration
latency. The stalls in (b) lead to additional states in C4 and
C5 to test, but further adding delay does not add new states.

describe how static analysis of the HLS hardware design can be
exploited to efficiently reduce the test space.

3.2 Test Case Reduction and Scheduling
3.2.1 Test Case Reduction. We now demonstrate how to restrict
the set of SU configurations to reduce the test space. PEDIA applies
static analysis on the HLS design’s schedule. The schedule of an HLS
design contains all possible hardware states of the hardware design
in clock cycles. A dynamically schedule design may contain input-
dependent hardware behaviors, and PEDIA focuses on the one with
maximum latency, also known as the ‘worst-case’ schedule.

For example, Figure 5a illustrates the schedule of a fully pipelined
loop. A fully pipelined loop schedule typically includes three con-
straints. First, the initiation interval II represents the number of
clock cycles between consecutive loop iterations. Second, the it-
eration latency 𝐿 represents the latency of a single-loop iteration.
Finally, the loop trip count 𝑁 represents the total number of loop
iterations. While these constraints can vary at run-time, here we
assume they remain constant for simplicity.

Figure 5b presents a schedule of the same loop with run-time
pipeline stalls. For example, the operation op2 in the second iter-
ation has a pipeline stall for three clock cycles, waiting for op1
to load data from shared memory. These pipeline stalls lead to
additional hardware states, as shown in cycle C4 and C5 in the
figure. These states are crucial for testing the ability of the HLS
design to handle backpressure. However, longer stalls might not
add new states if all independent operations are completed and the
HLS design is only waiting for the input. Such scenarios result in
redundant states in testing, such as cycle C6 in the figure.

These redundant states unnecessarily increase the test space,
because endless pipeline stalls lead to an infinite number of sched-
ules to test. To effectively reduce the test space while preserving
effective coverage of hardware states, PEDIA analyzes the HLS
schedule and restricts the maximum delay latency for each SU,
where the maximum delay latency is the maximum pipeline depth
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Figure 6: The test latency of benchmark MM depends on the
pipeline stalls in its surroundings. For a large set of test cases,
PEDIA automatically groups those with similar latencies to
run in parallel, avoiding long synchronization time in the
join component (Figure 3).

of the HLS design. For each probability-based SU, the hardware
scheduler counts the cycles where no SU passes any token and
forces the data to pass when the maximum delay latency is reached;
and for each pattern-based SU, no optimization is required since the
pattern is always a finite-length bit vector provided by the designer.

3.2.2 Test Case Scheduling. The restriction on SU behaviors for
reducing the test space also leads to a simpler hardware design of
the testing platform. The testing platform can be treated as an FPGA
accelerator, so traditional FPGA design optimizations can be applied
to improve area efficiency and performance. Here we explain four
key optimizations used in this work. All these optimizations are
general and applied to accommodate all test cases.
1) Data Parallelism maximizes the number of parallel test cases
within the available hardware resources. PEDIA obtains the area of
an HLS design from the synthesis report and determines efficient
parallelism in a greedy form. The memory bandwidth does not
scale with the number of parallelism, because the test cases in the
same iteration run on the same test data.
2) Data Packing packs multiple values in a single memory line
and accesses them in a single clock cycle, improving memory
density. PEDIA statically determines a data packing scheme by
checking the variable bitwidth and their throughput from the HLS
schedule. This data packing scheme does not change through-
out the testing process, because the data format does not change
among test cases. PEDIA also programs the corresponding decod-
ing logic for the hardware scheduler in Figure 3.
3) Data Prefetching prefetches data before testing, when the feed-
ing throughput of the fork in Figure 3 is lower than the consuming
throughput of the HLS design. The prefetching depth is statically
determined by the buffering constraints in Constraints 2 and 3.
4) Test Case Scheduling maps test cases with similar latencies
in the same iteration. This reduces the synchronization time of the
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Figure 7: PEDIA applies static analysis on the HLS schedule
and optimizes the hardware testing system for higher area
efficiency and lower testing latency. This figure shows the
normalized results of the static analysis-optimized hardware
testing compared to the one without optimization.

join component, because the latency of an iteration depends on
its slowest test case. PEDIA estimates the latency of each test case
based on its SU configurations. Figure 6 shows that more frequent
delays in the SU lead to longer total latency.
In each iteration, the hardware scheduler reconfigures the SUs for
all the test cases, prefetch the test data and start all the test instances.
The hardware optimizations significantly improve area efficiency
in BRAM usage and speedup testing time, as shown in Figure 7.
Compared to the vanilla testing platform, the optimized system
achieves up to 1.4× BRAM efficiency and 2.9× speedup. The better
area efficiency is due to optimizing buffer size by restricting the
maximum delays of SUs. The delay restriction in SUs also improves
the latency, as well as the optimizations above.

3.3 Use Case-Directed Testing
For a given HLS testbench, PEDIA automatically sweeps three
probabilities by default for stalling each data interface, 0.1, 0.5
and 0.9, leading to a set of test cases. However, designers can also
customize these constraints for their test data. This is particularly
useful when the HLS design is optimized for special use cases, such
that the HLS tests can ignore unrealistic data arrival times and focus
on a pre-defined test space. Existing HLS testbenches do not provide
such a user interface for designers because the HLS languages
are cycle-insensitive. Designers have to manually implement their
own testbenches for use case-directed testing. In order to lift this
restriction, PEDIA provides an optional cycle-sensitive interface
for designers to customize their tests.

For example, Figure 8 shows an example of PEDIA testbench for
the HLS design in Figure 1c. The original source of the testbench
remains the same as Vitis HLS. The injection of pipeline stalls can
be expressed using two types of pragmas. First, a pragma can set
pipeline stalls for a data interface based on a given probability.
For example, the pragma in line 8 states that every clock cycle
sel has a half chance of being stalled. This is suitable for large-
scale fuzzing of the HLS design to explore various timing behaviors
of inputs and outputs. Second, a pragma can also impose a static
schedule on a data interface, offering cycle-accurate control of its
arrival. For example, the pragma in line 10 sets the ready signal
of r to a static schedule with a period of five clock cycles. These
pragmas lead to probability-based and pattern-based SU insertion
in hardware respectively, as described in Section 3.1. There are
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1 // PEDIA HLS test bench
2 int main() {
3 ...
4 // Start hardware testing
5 for (int t = 0; t < 3; t++) {
6 // There is a 50% chance that sel gets
7 // blocked every cycle.
8 #pragma PEDIA port=sel probability =0.5
9 // r has a backpressure every five cycles.
10 #pragma PEDIA port=r pattern="11110"
11 vectmult(sel[t], a[t], b[t], r[t]);
12 }
13 ...
14 }

Figure 8: PEDIA testbench for the HLS program in Figure 1c.
PEDIA reuses existing HLS testbench source and allows de-
signers to input cycle-sensitive constraints for testing on spe-
cial use cases, such as ‘adding delays based on a probability
(line 8)’ or ‘adding delays following a given pattern (line 10)’.

also other pragmas for full control of the test, such as customizing
the buffer size of a particular interface and initial seed for the
probability-based SU. These pragmas are for annotation only and
can be applied onto diverse HLS tools and their testbenches.

3.4 Practical Testing and Design Considerations
In this section, we discuss practical needs beyond HLS verification
and describe our contributions in the debugging phase. First, the
adaptive interface of the SU enables seamless integration into any
handshake interface. PEDIA can also insert an SU into an exist-
ing handshake interface inside a dataflow HLS design. This helps
a designer identify bugs when a bug is detected at the top level.
For HLS tools that contain abstractions describing the hardware
dataflow architecture, such as Dynamatic [28] and TAPA [20], PE-
DIA analyzes the abstraction and inserts SUs into the design for
fine-grained testing. Taking Dynamatic for example, Figure 9 shows
the source of an HLS design and its test instance mapped into the
testing platform. On the left of the figure, the data behavior of
its surroundings is specified in the HLS testbench (lines 7-8), and
the internal data delays are specified in the HLS source using the
same pragma formats (lines 11-12). PEDIA inserts SUs into these
handshake interfaces on the right to achieve fine-grained testing.
However, the number of SUs inside the DUT could be large leading
to a significant drop in clock frequency if they are all controlled by
the hardware scheduler. Instead, PEDIA hardens the configurations
for SUs inside the HLS design, and only dynamically reconfigures
the external SUs using the hardware scheduler in Figure 3.

Second, the intermediate states are not accessible by the designer
when running on the PEDIA hardware testing platform. This may
increase debugging effort when a bug is detected, such as dead-
lock. In order to address this, PEDIA orchestrates the snapshot
feature provided by a hardware emulation framework named EN-
CORE [44] for interactive debugging. ENCORE is a framework that
exports snapshot of an FPGA design to the host at run-time. It
does not require modification of DUT so the integration can be
automated. PEDIA passes our testing platform as the whole DUT
in ENCORE and samples snapshots at a constant time interval. We
made modifications on the ENCORE overlay, but the HLS DUT

1 // Scalar arguments in
2 // Dynamatic are handshaked.
3 int top(int a,
4 int b[N],
5 stream_t &c) {
6 // In the HLS testbench:
7 // #pragma PEDIA port=a

probability =0.5
8 // #pragma PEDIA port=c

probability =0.5
9 auto d0 = f(a);
10 auto d1 = b[3];
11 #pragma PEDIA port=d0

probability =0.5
12 #pragma PEDIA port=d1

probability =0.5
13 c = d0*d1;
14 return c;
15 }
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Figure 9: An example of PEDIA injecting SUs both inside and
outside an HLS design in Dynamatic.

does not need to be modified, leading to automated generation of
a debugging platform. During the testing process, an FPGA snap-
shot of the testing platform is exported after a user-defined period,
including all the signal states at run time. The snapshot can be
passed to a hardware simulator, such as Xilinx Vivado XSIM [2]
and Siemens ModelSim [4], to continue testing using traditional
hardware simulation. This allows users to ‘teleport’ to a certain
breakpoint through hardware acceleration and observe the run-time
signals for debugging.

Finally, a DUT may require a higher memory bandwidth than
the available off-chip memory bandwidth on the FPGA device for
testing. Prefetching data may work but require a large buffer size,
potentially leading to a hardware mapping failure. PEDIA provides
a pragma to add clock divider to the HLS design and slows it down
by a user-defined factor. This allows the DUT bandwidth to match
the off-chip memory bandwidth, at the cost of long testing latency
for each test case.

There are two limitations of the PEDIA testing framework. First,
a large HLS design may not fit on the target FPGA, leading to an er-
ror raised by PEDIA. This requires the designer’s effort to partition
the HLS design for effective testing. This does not miss latency-
insensitivity bugs because the SUs effectively simulate neighbor
behaviors for each partition. Second, accurate coverage analysis
on latency insensitivity remains a research challenge. The existing
effort on coverage analysis focuses on the register transfer level
(RTL) level [33]. PEDIA is the first attempt at latency insensitivity
testing for dataflow HLS designs, and HLS coverage analysis will
be our future work.

4 Experiments
We evaluated PEDIA on several dataflow HLS benchmarks. For
testing capability analysis in bug detection, we compared PEDIA
with HLS testbenches generated by Vitis HLS and Dynamatic. For
performance analysis in testing time, we compared PEDIA with
commercial simulators, Xilinx XSIM [2] and Siemens ModelSim [4].
To ensure fairness in performance evaluation, we manually added
the same dynamic input behaviors as PEDIA to the HLS testbenches
for simulation. We also evaluated the area overhead of the proposed
hardware testing platform. We obtained the total clock cycles from
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Table 2: Overall hardware results of the HLS design over two benchmark sets and their testing platforms generated by PEDIA.
The upper part of the table have coarse-grained architecture and are tested with SUs around the HLS designs, and the lower
part of the table have fine-grained architecture and are tested with SUs inside the HLS designs. All SU probability = 0.5.

Benchmarks Standalone HLS design PEDIA testing system Normalized
Latency

per test (×)LUTs DSPs BRAM Fmax
(MHz)

Total
cycles

Latency
(𝜇s) Parallelism LUTs DSPs BRAM Fmax

(MHz)
Total
cycles

Latency
(𝜇s)

Latency
per test (𝜇s)

Synthesis
time (s)

CNN 195k 1.51k 417 295 39.2k 133 1 195k 1.51k 526 211 68.1k 323 323 1715 0.41×
DNN 117k 192 480 334 15.6k 46.8 2 233k 384 615 210 32.5k 155 155 2046 0.30×
MM 92.1k 1.73k 270 292 7.46k 25.6 1 96k 1.73k 270 212 10.1k 47 47 1577 0.54×
MTTKRP 138k 1.8k 273 308 72.7k 236 1 144k 1.8k 673 212 105k 497 497 1683 0.47×
TTMC 163k 1.56k 373 303 347k 1144 1 166k 1.56k 656 213 593k 2.79k 2.79k 1647 0.41×
histogram 713 0 0 359 1012 2.82 200 262k 0 600 200 16443 82 0.411 14077 6.8×
fir 630 3 0 353 1.02k 2.87 450 396 1.35k 900 163 15.3k 94.6 0.210 5403 13.7×
iir 1.00k 6 0 343 5k 14.6 150 237k 900 300 185 18.5k 100 0.668 1944 21.8×
image_resize 1.05k 0 0 341 941 2.76 150 260k 0 150 201 17.3k 86.2 0.574 2972 4.80×
insertion_sort 1.67k 0 0 331 526 1.59 80 226k 0 80 182 8.37k 46.0 0.574 2350 2.77×
jacobi_1d 1.18k 3 0 345 1.18k 3.41 150 282k 450 300 201 8.18k 40.8 0.272 1567 12.6×
video_filter 2.45k 9 0 335 945 2.82 80 273k 720 240 197 18.6k 94.6 1.18 3342 2.39×
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Figure 10: Comparison of the testing time (without synthesis time) between PEDIA and commercial tools on running 1500 test
cases. The speedup annotates the normalized testing speed of PEDIA (including synthesis time) compared to Vivado XSIM.

the Vivado XSIM simulator and the area results from the Post Place
& Route report in Vivado. The FPGA family we used for evaluation
is Xilinx Zynq UltraScale+. The version of Xilinx software is 2020.2,
and the version of ModelSim is 2020.4.

4.1 Benchmarks
There is no existing benchmark set for HLS design bugs or vul-
nerabilities. Here we illustrate three artificial but commonly used
examples including the motivating example, where existing HLS
testbenches potentially miss bugs. To demonstrate PEDIA’s broad
applicability to various HLS tools, we chose two distinct HLS bench-
mark sets from Vitis HLS-based AutoSA [48] and Dynamatic [28],
each generating designs with different dataflow architectures.

AutoSA contains five distinct benchmarks: CNN is a convolutional
kernel from a convolutional neural network; DNN is a fully connected
layer from a deep neural network; MM is a general matrix multiply
function; MTTKRP is a matricized tensor times khatri-rao product
function; and TTMC is a tensor times matrix-chain function.

We also choose seven realistic benchmarks from Dynamatic [28]
for evaluation: histogram sums various weights onto the corre-
sponding features in a sparse form; fir is a finite impulse re-
sponse filter function; iir is an infinite impulse response filter
function; image_resize resizes an image based on a given offset;
insertion_sort is an insertion sort function; jacobi_1d is a 1-D
Jacobi stencil function; and video_filter is a filter function for

videos with frames in RGB values. Both benchmark sets are publicly
accessible. We reproduced the HLS designs from these benchmarks
and used PEDIA for parallel HLS testing.

4.2 Testing Capability
Here we present two case studies on how PEDIA detects latency-
insensitivity bugs. The first example in Figure 11a shows a poten-
tially missed bug in a dataflowmultiplier by the Vitis HLS testbench.
Vitis HLS uses ‘hls_stream’ (annotated as stream_t) to instanti-
ate a handshake interface. Such a handshake interface provides
non-blocking APIs, read_nb and write_nb, where a load or store
still computes with absence or excessive copies of data. These APIs
are useful for dynamic dataflow behaviors, but may cause latency
insensitivity bugs. For example, late arrival of b or backpressure
from c may lead to a non-deterministic behavior. Existing solution
suggested by the official documentation of Vitis HLS [39] is to man-
ually implement a separate RTL testbench from the HLS testbench
for exhaustive testing. PEDIA addresses this by automatically gen-
erating a customized testbench for a given HLS design to perform
such latency insensitivity testing.

The second example in Figure 11b shows a working HLS design
in Dynamatic under specific constraints but cannot be correctly
verified by the existing testbench. The design adds two elements
from the same array and returns the result. This may lead to dead-
lock if the merge selects an inappropriate order to serialize a and
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1 void mult(
2 stream_t &a,
3 stream_t &b,
4 stream_t &c) {
5 TYPE d0, d1;
6 if (a.empty())
7 return;
8 // not checking b
9 d0 = a.read_nb ();
10 d1 = b.read_nb ();
11 // not checking c
12 c.write_nb(d0*d1);
13 }

(a) Non-deterministic
dataflow behavior in
Vitis HLS [1]

1 int add(
2 int a,
3 int b,
4 int d[N]) {
5
6 int x,y,r;
7
8 x = d[a];
9 y = d[b];
10
11 r = x+y;
12 return r;
13 }

(b) A load
adder in Dy-
namatic [28]
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Figure 11: Two case studies of how known issues in different
HLS tools can be tested in PEDIA.

b. For example, Figure 11c shows a deadlock state. For simplicity,
a shift register is used to model the pipeline of the load operation.
1) The example shows one possible execution trace where x =
d[a] executes twice before y = d[b] executes, because the merge
always chooses a first when a and b are both valid. 2) The adder
receives the first x and needs to pair it with the first y to process. 3)
The second x at the output of load is blocked by the backpressure
sent by the adder because the data path already holds the first x. 4)
The first y is queued in the pipeline, waiting for the second x to be
released to reach the output. This is the schedule when a and b are
both valid. The circuit still works correctly for the use case where a
and b always arrive alternatively. The Dynamatic testbench cannot
accept such cycle-sensitive constraints to test special use cases of
an HLS desigm, while these constraints can be accepted and tested
on the HLS design by PEDIA.

4.3 Hardware Testing Platform Area
The overall hardware results of the tested HLS designs and their
corresponding testing platforms are shown in Table 2. Compared to
sequential testing on an FPGA, the parallelism enabled by PEDIA
demonstrates a significant speedup. The upper part of the table
generates HLS designs with larger areas, because the optimizer in
AutoSA tries to utilize maximum hardware resources on the target
FPGA for high performance. Most of these designs are typically
limited by the available DSP resources and cannot be duplicated for
parallel testing. PEDIA then performs sequential testing with SUs.
The area overhead of the hardware platform is relatively small, up
to 4% the area of the HLS design. The integration of SUs increases
the critical path, leading to a lower clock frequency.

The lower part of Table 2 generates smaller HLS designs com-
pared to the upper part. These designs have a fine-grained dataflow
architecture consisting of several dataflow components connected
via handshake interfaces. For these benchmarks, PEDIA integrates
SUs inside an HLS design and replicates the HLS design extensively
for parallel testing. This approach has achieved up to 450 concur-
rent test cases, resulting in a speedup of up to 21.8× in test time
compared to sequential testing. However, the fine-grained testing
requires a large number of SUs, leading to a relatively large area
overhead and a longer critical path.

1 2 4 8 16 32 64 128
0.01

1

100

43975s

90s

4634s

15s

3177s

Test case count

Sp
ee
du

p
(×

)

CNN DNN MM

MTTKRP TTMC

Figure 12: Speedup of PEDIA (including synthesis time) com-
pared to Vivado XSIM. The numbers represent the average
simulation latency per test case in XSIM.

Table 3: Average latency breakdown for each benchmark. CF
= Configuration time of SUs. PF = Data prefetching time.

Benchmarks # SU Clock Cycles Latency in %

CF PF CF PF

CNN 3 2 10584 0.00 15.55
DNN 3 4 2048 0.00 1.53
MM 3 2 1296 0.02 12.89
MTTKRP 4 2 960 0.00 0.91
TTMC 4 2 8320 0.00 5.90

histogram 87 50 1001 0.30 6.09
fir 69 0 1000 0.00 6.37
iir 104 300 1001 1.62 5.41
image_resize 130 300 901 1.73 5.19
insertion_sort 204 160 1001 1.91 11.96
jacobi_1d 144 0 100 0.00 1.32
video_filter 209 320 1802 1.72 9.66

4.4 Testing Speedup
We now evaluate our approach in testing time compared with com-
mercial HLS tools. Commercial HLS tools, such as Vitis HLS [1]
and Stratus HLS [3], generate HLS designs in RTL code and or-
chestrate existing hardware simulators, such as Vivado XSIM and
ModelSim, for testing. These simulators run test cases sequentially
on a CPU, and PEDIA runs in parallel on an FPGA. FPGAs can
achieve high performance but require synthesis time to generate
the bitstream. For a fair comparison, we consider the total testing
time, including both synthesis and run-time. The synthesis time for
each benchmark is shown in Table 2. The proposed testing platform
supports lightweight reconfiguration as described in Section 3.1,
only requiring the generation of a single bitstream per benchmark.
Detailed latency breakdown is shown in Table 3.

The test times per test case across different approaches are illus-
trated in Figure 10. Existing work on hardware-accelerated testing
does not support HLS inputs, we use sequential testing as the base-
line for hardware-accelerated testing and also compare PEDIA with
two commercial HLS simulators, Vivado XSIM and ModelSim. In
this figure, a lower bar indicates better performance. Overall, PE-
DIA achieves significant speedup compared to other approaches.
The testing time of hardware-accelerated testing is faster than sim-
ulation on a CPU, as it exploits hardware parallelism and does not
need to keep traces of signals at runtime. PEDIA achieves further
speedup due to additional parallelism among test cases. There is
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an interesting observation that PEDIA does not achieve hundreds
of times speedup when testing hundreds of test cases in parallel.
The main reason is that the delays introduced by SUs significantly
extend the total latency of the HLS design, leading to a slowdown
of up to tens of times. PEDIA hides such latency overhead by paral-
lelism among test cases, still leading to significant speedup.

Despite the considerable time overhead caused by generating the
bitstream, PEDIA still shows the fastest testing speed when running
1500 test cases, as shown in Figure 10. The speedup from PEDIA
is expected to increase with more test cases. Figure 12 illustrates
this trend in systolic array benchmarks, comparing the speedup by
PEDIA on various test cases against Vivado XSIM. These bench-
marks require long simulation time using Vivado XSIM due to the
complexity of the HLS design. With a huge time offset of the syn-
thesis time, PEDIA initially shows worse test times with fewer test
cases on MM and DNN. However, as the number of test cases increases,
the hardware testing latency hides the synthesis time, leading to a
significant speedup on all benchmarks.

5 Related Work
HLS Programming Languages HLS tools have greatly improved
hardware development productivity with software-defined hard-
ware design. Various domain-specific languages (DSLs) have been
introduced to bridge the gap between software programs and hard-
ware designs. TAPA [14, 20] focuses on dataflow architectures and
task-level parallelism optimization. Spatial [31] offers a data path-
aware abstraction. PyLog [24] is a Python-based DSL for hardware
mapping. HeteroCL [34] and HeteroFlow [50] express both hard-
ware algorithms and optimizations. PolySA [16] and SODA [13]
provide affine abstractions for hardware optimizations. However,
these high-level abstractions lack cycle-sensitivity and rely on HLS
tools for scheduling and re-timing. PEDIA presents a novel ab-
straction for HLS testing, offering an interface for cycle-sensitive
analysis and testing of HLS designs.

HLS languages with hardware typing systems ensure hardware
schedule correctness by construction. Dahlia [37] is a scheduling-
aware DSL focusing on affine programs. Filament [38] uses timeline
types to describe hardware computing IIs at the source level. Aether-
ling [17] introduces a strong type system for streaming architec-
tures. However, all these typing systems cannot handle operations
with data-dependent or variable latencies because of their limits in
static analysis, while PEDIA offers a general approach for dataflow
HLS designs including dynamically scheduled circuits.

HLS Testing and Verification Existing hardware testing pri-
marily relies on RTL simulation [2, 4, 45, 49], which requires manual
setup of testing environments. PEDIA addresses this by automati-
cally generating latency insensitivity test cases for designers, sim-
plifying HLS testing to resemble traditional software testing.

Most HLS testing frameworks rely on CPU-based hardware sim-
ulation. Kôika [12], a hardware DSL, utilizes Cuttlesim [41] for
testing, transforming hardware designs into software specifica-
tions for debugging. Another hardware DSL, Chisel [9], employs
HGDB [51] for source-level debugging. Commercial tools like Xilinx
Vitis HLS [1], Stratus HLS [3], and Intel HLS compilers [26] use their
own hardware simulators or commercial RTL simulator like Model-
Sim [4]. Efforts like FastSim [5], FLASH [15], and LightningSim [42]

have been made to speed up HLS testing by fast simulation. They
still focus on varying input values and test on CPUs, while PEDIA
provides latency insensitivity testing on FPGAs.

Hardware-accelerated Testing FPGA-based acceleration for
hardware testing, especially at the RTL level, has been widely stud-
ied. The first specialized architecture for emulation was proposed
by IBM [10, 40]. Initial FPGA-based emulators [8, 30, 32] are used
to emulate low-level hardware designs. Tiwari et al. [47] propose
using additional ‘scan chains’ circuitry for mapping and debugging
hardware designs on FPGAs. Commercial tools, such as Intel Signal
Tap Logic Analyzer [27] and AMD Xilinx ChipScope Integrated
Logic Analyzer [6], provide interfaces for monitoring hardware
behaviors on FPGAs at run-time. Further advancements include
combining hardware emulation with software simulation using
JIT-like methods for faster emulation [7, 43], as well as efficient
architectures like ASH by Elsabbagh et al. [19] for accelerating RTL
simulation through hardware-software co-design. However, these
methods focus on low-level hardware languages and require man-
ual specification of test cases. PEDIA targets high-level software
programs and automatically generates cycle-sensitive test cases.

ENCORE [44] and FireSim [29] are FPGA-based frameworks for
hardware testing and simulation using high-level software specifi-
cations. However, they rely on user effort for optimizations while
PEDIA automatically optimizes both the test space and the hard-
ware testing platform for efficient testing.

6 Conclusions
This paper addresses a gap in HLS testing where existing HLS test-
benches insufficiently test the latency insensitivity of dataflow HLS
designs, risking potential design bugs. We introduce PEDIA, an end-
to-end toolflow for testing dynamic external data behaviors around
the HLS design. The main contributions of PEDIA include its expan-
sion of the test space beyond input value variation to include input
arrival times, improving the robustness and reliability of dataflow
HLS designs. This is especially valuable in real-world scenarios with
dynamic inputs. The proposed cycle-sensitive abstraction in PEDIA
enables users to effectively test crucial hardware behaviors for spe-
cial use cases, such as late inputs and backpressure, overcoming
limitations of current HLS languages. PEDIA leverages FPGA-based
parallel testing for hardware acceleration, greatly reducing testing
times and outperforming existing commercial hardware simulators.
The reported average speedup of 4.53× indicates the effectiveness
and efficiency of the proposed testing platform. Our future work
will explore the fundamental limits of this approach, both theoreti-
cally and practically. First, we plan to add support for HLS testing
on multiple FPGAs, migrating PEDIA to FPGAs in the cloud for
device-level parallelism. Second, we plan to study coverage analysis
for automated HLS testing. We plan to build on previous coverage
analysis work [33], lifting it from the RTL level to the HLS level.
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