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Abstract—High-level synthesis (HLS) automatically transforms
high-level programs in a language such as C/C++ into a low-
level hardware description. In this context, loop pipelining is a
key optimisation method for improving hardware performance.
The main performance bottleneck of a pipelined loop is the ratio
between two values: the latency of each iteration and the depen-
dence distance of the operations in the loop. These two values
are usually not known exactly, so existing HLS schedulers model
them independently, which can cause sub-optimal performance.
This paper extends state-of-the-art static schedulers with a fully
automated pass that exposes and takes advantage of potential
correlation between these two values, enabling smaller initiation
intervals (II). We use the Microsoft Boogie software verifier to
prove the existence of these correlations, which allows HLS tools
to automatically find a high-performance hardware solution while
maintaining correctness. Our results show that for a certain
class of programs, our approach achieves, on average, an 11.1x
performance gain at the cost of a 95% area overhead.

Index Terms—High-Level Synthesis, Loop Pipelining, Formal
Methods.

I. INTRODUCTION

High-level synthesis (HLS) tools use loop pipelining as
one of the most common optimisation methods [1]], [2]. Loop
pipelining allows multiple iterations of a loop to be executed
concurrently. The same operation in two consecutive iterations
has a time difference in clock cycles, also known as the
initiation interval (II). A small II leads to high throughput
of the hardware design, since it allows loop iterations to
be executed at early time. Traditional modulo schedulers are
not flow-sensitive, and therefore need to make conservative
approximations that cover all possible control paths. In order to
preserve correctness, the scheduler has to ensure that any data
processed by an operation is always valid before the operation
starts. Since the exact hardware behaviour can vary, the static
scheduler has to assume the “worst case” for loop pipelining.

There are two properties of a loop that limit how small an
IT can be achieved.

« The first is the iteration latency; i.e., the latency of each
iteration. High iteration latencies can lead to high IIs,
especially if an early operation in one iteration has to wait
for a late operation in a previous iteration to complete.
Iteration latencies can vary at run-time between iterations,
but existing static schedulers just take the maximum
value.

o The second is the dependence distance; i.e., the number
of iterations that separate an operation from its depen-

dants. Low dependence distances can lead to high IIs,
because they limit the number of iterations that can
be safely overlapped. Dependence distances can vary
between iterations, but existing static schedulers just take
a constant distance of 1 if it is not a constant.

The observation that drives this paper is that these two
constraints may be correlated, and then the hardware may be
optimised if these correlations can be captured. For instance,
a loop may not have the maximum iteration latency at the
minimum dependence distance. In existing static scheduling
approaches, the iteration latency and dependence are approx-
imated independently [1]], [2]]. Ignoring such correlations can
lead to sub-optimal performance in the hardware design.

Capturing these correlations for arbitrary code is challeng-
ing, since most scheduling techniques only are based on linear-
programming formulation and restricted to a certain class of
code patterns. This paper overcomes two challenges for HLS
tools: 1) How to efficiently explore the correlations between
these two constraints for arbitrary code? 2) How to bring the
benefit of these correlations into loop pipelining?

Our main contributions include:

« A technique that describes the correlations between the
iteration latency and the dependence distance for arbitrary
loops in a Boogie program.

o A fully automated HLS pass that calls Vitis HLS and
Boogie verifier to find a minimum loop II by formally
proving the absence of dependence violation in a loop
schedule.

o Analysis and results showing that on average the pro-
posed approach achieved 11.1x performance gain and
95% area overhead on average over a set of benchmarks.

The rest of the paper is organised as follows: Sec. [II| gives
a motivating example where our approach can find a signif-
icantly smaller II than Vitis HLS in loop pipelining. Sec.
revisits the related works. Sec. [Vl illustrates the formalisation
of loop pipelining and Boogie program generation. Sec.
evaluates the effectiveness of our approach.

II. MOTIVATING EXAMPLE

This section presents a motivating example of how the
iteration latency and the dependence distance can be corre-
lated. Fig. |1| illustrates a program that contains a for loop
named loop_0. In the loop, the program checks the given



1| double f (double a) {

2 return (((((a+0.64)*a+0.7)*a+0.21)
3 *a+0.33) xa+0.25) xa+0.125;
4]}

5| void example (double vec[M]) {

6 loop_0O:

7 for (int 1 = 0; 1 < N; i++){

8| #pragma HLS PIPELINE

9 double e = vec[i];

10 if (e > 0) vec[i+63] = f(e);
11 else vec[i*xi+9] = e * e;

12 }

13|}

Fig. 1: Catapult HLS and Intel HLS Compiler fail to pipeline
the loop. Vitis HLS achieves an II of 41. Traditional techniques
such as loop splitting and polyhedral analysis cannot improve
the performance. Our approach finds an optimal II of 2.

condition on the loop iterator i. If it is true, the array element
at vec[1+63] is overwritten by a polynomial function of
vec[i], otherwise, vec[1i%1+9] is over-written by the
square of vec[i].

loop_0 is to be pipelined with an optimal II for the best
performance. The iteration latency of the true path is 82 cycles,
and the iteration latency of the false path is 5 cycles. The
minimum memory dependence distance is 9. We investigated
three well-known HLS tools in industry.

o Catapult HLS [3|] and Intel HLS compiler [4] fail to
pipeline the loop, requiring the user to manually find
the optimal II. The output hardware contains a sequential
loop, corresponding to an I of 82.

o Vitis HLS 2020.1 [5] pipelines the loop with an II of
41. The reason is that the scheduler cannot see the
correlation between the two branches and conservatively
approximates the control flow.

Taking Vitis HLS for example, if we force the tool to
pipeline the loop with an II of 2, the resulting hardware still
preserves correctness. With 2.55x LUTs and 3x DSPs, the
computation of the hardware with an II of 2 achieves 22.2x
speedup compared to the hardware with an II of 41. The
motivation of our work is to find a smaller II by formally
analysing these hidden correlations.

Extracting such correlations from arbitrary code for loop
pipelining is challenging. For instance, polyhedral analysis
does not support non-affine memory addresses, and loop
splitting does not support data dependent conditions in a loop.
Our tool translates the scheduling problem into a verification
problem at high abstraction level that can be solved by a
existing verifier named Boogie [[6]. Replying on the existing
techniques in Boogie verifier, the correlations between the
iteration latency and dependence distance can be efficiently
explored for loop pipelining.

III. BACKGROUND

Loop pipelining has been well-studied in the past decades.
Zhang and Liu [[1] propose efficient scheduling methods on
exploring memory dependences and resources. Canis ef al. [2]]
further optimise the approach by reducing the recurrence when
reducing IIs. They model the dependence distance and iteration
latency independently, while we explore the correlations be-
tween these constraints. Polyhedral analysis for loop pipelining
is also popular [7], [8]. Other program techniques [9]-[11]]
are also used for scheduling optimisation. However, these
techniques all work under the same dependence approximation
made by the scheduler, while we prove a new dependence
approximation with a smaller set of dependences for certain
applications. There are also works on dynamic pipelining
which cost additional hardware [[12]—[15] and our work does
not add any area to the circuit apart from by increasing IIs.

Formal methods are commonly used in software verifica-
tion. The Satisfiability-Modulo Theory (SMT)-based optimi-
sation for HLS has been explored in memory banking [16],
[17]. This paper investigates loop pipelining using Microsoft
Boogie [6]], an automatic program verifier built on top of
SMT solvers. Boogie has its own intermediate verification lan-
guage (IVL) to describe the program behaviour being verified.
An SMT solver then reasons about the program behaviour,
including the values that its variables may take. Encoding
of verification as SMT queries is automatically performed by
Boogie, hidden from the user. Here we list some Boogie structs
that are used in this paper:

1) if (%) {a} else {B} tells the verifier that either

branch might be taken non-deterministically.

2) havoc x assigns arbitrary values to a variable or an
array x. This can be used to capture all the cases the
program behaves.

3) assert c proves the condition c for all the values that
the variables in ¢ may take.

IV. METHODOLOGY

In this section, we first extend the formulation of loop
pipelining and reduce it to a verification problem. Then
we show how the automatically generated Boogie program
describes loop behaviours. Finally, we demonstrate our tool
flow on top of Vitis HLS and Boogie verifier.

A. General Loop Pipeling Formulation

For a given loop that contains a set of statements, S, So,
Ss, ... Sk, the goal of scheduling is to determine a start
time ¢, for every instance of every statement. Let L, j
be the latency of instance n of statement % in clock cycles.
There are dependences between statements as shown in Eq.
e.g. instance ny of statement ks depends on instance n; of
statement k;. Therefore, a feasible schedule satisfies Eq.
where t and L are the start time and the latency of the instance.

D C N*: (ki ko,ni,na) €D (1)
v(kla kQanlanQ) S D7t77,2,k72 2 tnl,kl + Lnl,kl (2)



1| procedure pickOneMemStmtFromExample ;
2| (vec:[int]double) returns (valid:bool, k:int, 3
3l addr:int, n:int, mode:memTy, array:int) { 4
4 // loop_0: for (int i = 0; i < N; i++){ 5
5 e
6 if (x){ // e = vec[il]; 6
7 valid = 1; k = 0; addr = i; n = 1i; 7
8 mode = LOAD; array = 0; return; }
9 if (x){ // if (e > 0) 3
10 if (x){ // vec[i+63] = f(e); 9
11 valid = 1; label = 1; addr = i+63; n = 10

i 11
12 mode = STORE; array = 0; return; }

12

13 } else { 13
14 if (x){ // vec[i*i+9] = exe; 14
15 valid = 1; k = 2; addr = ixi+9; n = i; 15
16 mode = STORE; array = 0; return; } }
17 ce 16
18 // } // end of loop_0 17
19 valid = 0; 18
20 return;
2 19/ )

procedure main(II:int) {

// we consider that array vec has arbitrary values.

havoc vec;

P = 1II; // for a given II

// and any two (k, n) from the loop,

call valid_1,k_1,addr_1,n_1,mode_1,array_1 =
pickOneMemStmtFromExample (vec) ;

call valid_2,k_2,addr_2,n_2,mode_2,array_2 =
pickOneMemStmtFromExample (vec) ;

// both (k_1, n_1) and (k_2, n_2) are valid

if (!valid_1 || !'valid_2) return;

// and access the same array and address

if (array_1 != array_2 || addr_1l != addr_2) return;

// and at most one (k, n) is a load

if (mode_1 == LOAD && mode_2 == LOAD) return;

// assume w.l.o.g. (k_1, n_1) is earlier than (k_2,
n_2)

if (n_1 > n_2) return;

// their offset & latency satisfy Eqg. 7

assert getOffset (k_2) >= getOffset(k_1) +
getLatency (k_1) - Px(n_2-iterl);

(a) The program behaviour is described in Boogie.

(b) Dependence condition verification.

Fig. 2: Automatically generated Boogie query for the example in Fig.

B. Modulo Scheduling Formulation

Typical HLS tools use modulo scheduling for loop pipelin-
ing [18]. In modulo scheduling, the time constraints and
dependences are approximated to simplify the static analysis.
The start times and latencies are restricted to be:

tnk = g+ Pn,a; >0

L;C = mriax Lk

3)
4)

where o, is a constant for a statement as its offset time, and
P is the initiation interval. The model assumes that a statement
k always takes L cycles to execute, where Lj is an upper
bound of L,, ;. This means that the total execution time of the
loop is bounded by maxy, , = P(N — 1) +maxy (o + L) ~
PN, where N is the total number of instances.

The dependences are restricted as D’ as shown in Eq.
where d is nl — n2, also known as the dependence distance,
and D’ is an approximated set of D. For example, instance
n of statement Sy, depends on the output from instance
n — d of statement Sy, only if (ki,k2,d) € D, i.e. D =
{(k1, k2,n1,n2)|(k1,k2,n2 — n1) € D’}. The dependence
constraints that need to be solved are approximated as Eq. [
Substituting the approximation of modulo scheduling in Eq. 3]
into Eq. 2] the dependence constraint becomes:

g, + Png > oy, + Pny + Ly, i,
This is then reformulated to:
Qky > 0, + P(ny —n2) + L, &y

The approximation of modulo scheduling Eq. ] restricts the
dependence constraint into:

Qy > oy + P(ny —ng) + Ly,
> op, + P(ny —ng) + Ly,

Modulo scheduling assumes d = min,, n,(n2 —n1), so the
dependence constraint becomes:

D' C N3 : (ky,ky,d) € D
v(k17k2ad) S D/’akz > A, —|—L;€1 —Pd

®)
(6)

Eq. [ restricts L’ only depending on a set of L, and Eq.
restricts D’ only depending on d. Such over-approximations
can limit the capability of schedulers to solve the problem
found in Sec. [l

C. Our Formulation

A novelty of our formulation lies in changing the constraints
from Eq. |§|to Eq.[7 We introduce D" C D C N* that depends
on L to support variable dependence distance. The dependence
constraints are then extended to:

V(ky, k2 ,n1,n2) € D" o, > ag, + Ly, — P(ng —ny) (7)

The condition of the traditional modulo scheduling causes
sub-optimal performance is:

max (Lj, — P(nz —n1))

— P min (ny — nq)
ni,n2,k1

!

< Hllc?x Ly, Jnin

®)

The right-hand side is the independent approximation in

traditional scheduling, and the left-hand side is the approxi-

mation including the correlation between the iteration latency

and dependence distance. We keep the formulation of L’ in

Eq. [ from Vitis HLS, and use Boogie to automatically extract
D" from our translation and prove Eq.
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Fig. 3: Our tool flow using Boogie to find the minimum II.

TABLE I: Overall results on four benchmarks. Our approach gains better performance compared to Vitis HLS. Fy,,x represents
the maximum frequency, in MHz. ¢,, represents the wall clock time, in us

Vitis HLS by default

Our approach

I LUTs DSPs Registers Fmax  Cycles tw I LUTs DSPs Registers Frnax Cycles tw
vecTrans 81 2530 14 1220 118 72902 617 2 5961 42 4212 135 1881 13.9
loopCond 52 3168 8 610 139 52002 373 3 3690 8 1681 139 3050 21.9
dist_itr 1" 2245 14 1176 126 50961 406 11 2381 14 1920 127 10822 85.1
quard 41 2277 14 1427 118 4142 35 2 2595 39 3445 135 377 2.8
geom. mean - 1x 1x 1x 1x 1x 1x - 143x  1.95% 2.56x  1.07x 0.10x  0.09x

* Vitis HLS automatically infers an II of 1 and fails the simulation. Therefore, we provide the result of sequential hardware for dist_itr here.

D. Boogie Program Generation

In a loop, the dependence distance of a non-trivial data
recurrence is always 1, which is well-handled by existing
schedulers. Only memory statements can have variable de-
pendence distances, so the memory dependence needs to
be analysed. Our tool automatically translates these memory
statements into a Boogie program, following three steps:

1) Program slicing: Instructions that do not affect the
memory accesses are not translated into Boogie, such as
function f, because only the values of memory addresses are
required for dependence analysis.

2) Behaviour/Dependence Description: The sliced pro-
gram is then transformed into a Boogie program to
prove Eq. Fig. illustrates part of Boogie descrip-
tion for the motivating example in Fig. The procedure
pickOneMemStmtFromExample in Fig. [2a] returns an
arbitrary (k,n) from a loop where statement k is always a
memory statement. We reformulate each (k,n) as a 6-tuple
for modelling D":

valid: validity of (k,n). It is invalid after the loop finishes.
k & n: the value of k & the value of n.

addr: the array address.

mode: whether the statement is a load or a store.

array: the array accessed by this statement.

The loop structure is modelled using an existing tool
named EASY [17] based on the formulation by Chong [19],
which can capture the behaviour of any arbitrary loop it-
eration. For simplicity, we only show the loop body as
one of our contributions. Each data-dependent condition is
approximated into a non-deterministic condition if (*) like
line 8 so the verifier tries to prove Eq. [/| for both cases.
Each memory statement is also formulated as a 6-tuple and
arbitrarily returned using if («). Therefore, the procedure

pickOneMemStmtFromExample arbitrarily returns one
memory access in the loop across all the iterations.

3) Assertion Description: The other part of the Boogie
program in Fig. proves Eq. [7] for two different (k,n).
Firstly, two call instructions return two arbitrarily (k,n) in
6-tuples. Then the Boogie program ignores the cases of the
independent set {(k1, ko, n1,n2)}\ D" with three conditions:
1) Any two (k,n) must be both valid; 2) they should access
the same array at the same address; 3) have at most one write
so the dependence exists. We assume (ks,n2) is after (k1,n1)
so given the offset time « and latency L’ of these two accesses,
the assertion on line 18 which describes Eq. [/| always holds
if the given II is reachable.

E. Tool Flow

The tool flow of our work that takes Vitis HLS for pro-
totyping is shown in Fig. |3] Our tool only uses Vitis HLS
for obtaining offsets and latencies in Eq. [3} Then the Boogie
verifier proves whether the schedule satisfies the constraints
with the given II. If failed, the II is relaxed and the verification
is repeated with the corresponding offsets and latencies until
an successfully proved II is found. Our tool uses a search
sequence that checks II < 5 first and then binary search,
and also allows users to customise the II search region. The
iterative process uses Vitis HLS only for getting the offsets
and latencies instead of synthesis.

V. EXPERIMENTS

Our approach is beneficial for a certain class of applications
that contains control flows in a loop. Most loops in existing
benchmark sets, such as Polybench [[20] and CHStone [21]], are
amenable for existing HLS tool flow because of the absence
of Eq. [} such that Vitis HLS can already generate optimal



100: T T T T T T TTTT] T T T TTTT] T T
S [ 4
= 10} E
Q F ]
3 I ]
o - 4
8 i |
3 baseline
< = 1
E | :
g i disg_itr 1
e 0
- A E
= 1 B
A F loopCOHdgGMrnp ¢ §
- vecTrans |
o
001 Lol L] Lol L
0.01 0.1 1 10 100

Area (normalised to baseline)

Fig. 4: Relative area and delay of our designs compared to the
baseline.

schedules. Instead we investigate four benchmarks that have

the code patterns in realistic applicationsﬂ where Eq. 8| exists.

vecTrans performs conditional matrix transformation on a
partitioned array.

loopCond contains a loop pattern with an i f condition that
performs different operations depending on the loop iterator,
which can be found in stencil computation [23].

dist_itr conditionally assigns a polynomial function of array
data to another affine address of the same array, which
can be seen in matrix decomposition and triangular matrix
computation [8f], [24].

quard as part of tramp3d-v4 benchmark has a non-linear
memory access pattern that increments the array index in a
quadratic form [25].

Existing approaches, e.g. polyhedral techniques including
loop splitting, can only benefit restricted loops that have
simple control flow, which produced the same results as Vitis
HLS for these benchmarks. We compare our results with the
corresponding design automatically inferred from Vitis HLS.
We assess our work on both the circuit area and the wall clock
time from Vitis. The FPGA family we used for measurements
is xc7z020clg484, and the version of Vitis software is 2020.1.

Fig. [] illustrates the relative area and delay of our designs
compared to the baseline. All the benchmarks are on the
bottom right of the baseline point, indicating our approach
achieves higher performance with affordable area overhead.
Tab. [ shows the detailed results of the four benchmarks.
All the benchmarks either cannot be efficiently pipelined
by Vitis HLS automatically, or gives wrong results as the
scheduler gives an over-optimistic II. The cycle counts are

I'The source of our tool and benchmarks are available at [22].

significantly reduced by our work due to smaller IIs with area
overheads. The maximum frequency does not change since
both approaches use Vitis HLS for retiming. On average, we
achieve 11.1x speedup with 1.95x area. If the condition does
not exist in the input code, our approach can still give the same
IT as the II automatically determined by Vitis HLS, without
losing any performance or area. The time overhead in our
tool is neglectable compared to the synthesis time in Vitis
HLS, which are for generation and verification of a Boogie
program and interfacing the scheduling process in Vitis HLS.
The average additional time is 2 minutes in our experiments.

VI. CONCLUSIONS

In HLS tools, existing static scheduling approaches approx-
imate the distance distances and iteration latencies indepen-
dently for loop pipelining. We show in a certain class of
applications, correlating these two constraints in scheduling
can significantly improve the hardware performance. Our work
supports automatic translation for arbitrary code into Boogie
programs, and formally proves the correctness of the schedule
with a smaller II. Our future work is to explore the limits of
static analysis in dynamic scheduling.
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