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Abstract—The growth of long-context Large Language Models
(LLMs) significantly increases memory and bandwidth pressure
during autoregressive decoding due to the expanding Key-Value
(KV) cache. While accuracy-preserving KV-cache quantization
(e.g., 4-bit or 2-bit) reduces memory footprint, existing systems
decode inefficiently by relying solely on CUDA cores, underuti-
lizing Tensor Cores—the dominant compute resource on GPUs.

We present BitDecoding, the first inference system to effi-
ciently decode low-bit KV caches by cooperatively leveraging
CUDA cores and Tensor Cores. BitDecoding smartly induces
Tensor-Core-friendly layouts, introduces warp-level dequantiza-
tion parallelism, and provides unified system support through
query transformation, high-performance tensor- and channel-
wise quantization, and a software-pipelined dequantization ker-
nel enabling mixed-precision execution. Architecture-aware opti-
mizations further leverage Hopper’s warpgroup tensor instruc-
tions and Blackwell’s NVFP4 (MXFP4) tensor formats.

Evaluated on Blackwell, Hopper, and Ampere GPUs, BitDe-
coding achieves an average 7.5x decoding speedup over FP16
FlashDecoding-v2, up to 8.6x on Blackwell with NVFP4, and
up to 4.3 over state-of-the-art approaches. On LLaMA-3.1-8B
with a 128K context, BitDecoding reduces single-batch decoding
latency by 3. BitDecoding is open-sourced at https://github.com/
OpenBitSys/BitDecoding.

I. INTRODUCTION

The ability of Large Language Models (LLMs) to process
long contexts [7], [23], [30] has unlocked new capabilities,
such as book summarization [4], multi-modal understanding
[35], and test-time scaling [11], [22]. However, these ad-
vancements come with significant memory and computational
challenges, primarily due to the large size of the Key-Value
(KV) cache in long-context scenarios. During autoregressive
decoding, LLMs must repeatedly access this growing cache
for each generated token, which increases memory usage
and slows down decoding. The problem worsens with larger
batch sizes, as the KV cache scales linearly with the number
of concurrent queries. For example, a 7B model requires
approximately 14GB GPU memory for its parameters, but with
a 32K context length and a batch size of 8, the KV cache alone
consumes 128GB GPU memory [12], creating a significant
memory bottleneck.

To address this growing bottleneck, KV cache quanti-
zation has emerged as a promising solution. By reducing
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the bit-width of the KV cache, quantization lowers memory
overhead and improves overall efficiency. Recent quantization
algorithms have shown that low-bit KV cache can retain
high accuracy. QServe [16] demonstrates 4-bit KV cache
improves throughput on models like LLaMA-3 and Qwen-1.5
while maintaining strong accuracy, even together with 4-bit
weight and 8-bit activation. Further research [13], [18], [27]
shows that 2-bit KV cache can achieve near fpl6 accuracy.
Kivi [18], for instance, incurs only a 0.6% accuracy drop
on LongBench [3] with a 2-bit KV cache on LLaMA-2-
7B-Chat. Recent studies [29], [36] explore 1-bit quantization
for KV cache, maintaining acceptable accuracy under specific
conditions. These results confirm that KV cache quantization
strikes an effective balance between efficiency and accuracy,
making it viable for long-context LLM deployment.

Despite the memory savings, current system support for
low-bit KV cache struggles to deliver the expected speedup.
Previous implementations [16], [18], [37] remain preliminary
and case-specific, with significant room for further systematic
optimization. A major bottleneck lies in the overhead intro-
duced by quantization and dequantization. Although the KV
cache is low-bit, the query (Q) values and attention scores
remain in high precision. This results in mixed-precision
matrix multiplications (mpGEMM), which existing hardware
does not natively support, requiring dequantization before
multiplication. Previous mpGEMM kernels like Ladder [33]
and Marlin [9] are designed for low-bit weights but cannot
be directly applied to low-bit KV caches. This is because
weights are static and stored offline, while KV caches are
dynamic and generated online. In autoregressive decoding,
each newly generated token requires quantization, packing,
and dequantization of the low-bit KV cache, introducing
significant overhead and complexity in GPU kernel design,
as illustrated in Fig. 1.

To address this, our insight is to leverage Tensor Cores
for intensive matrix multiplications while efficiently utilizing
CUDA cores for KV cache dequantization. Previous work
either implemented with separated kernels or fused attention
operations relied solely on CUDA cores, leaving Tensor Cores
underutilized, as shown in Fig. 2. Our approach is based on
three key observations: First, modern language models employ
Grouped-Query Attention (GQA) and Multi-Query Attention
(MQA), which share a group of keys across multiple queries,
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Fig. 1: Comparison of mixed-precision matrix multiplication
for low-bit weight and low-bit KV cache. (a) Quantized
weights can be preprocessed offline. (b) KV cache requires
online quantization and packing for each newly generated
token.

enabling Tensor Cores to accelerate dot products in the self-
attention mechanism. Second, leveraging Tensor Cores can al-
leviate computational pressure on CUDA cores, enabling more
efficient execution of low-bit operations. Finally, newer GPU
architectures provide distinct mechanisms: Hopper’s support
for asynchronous execution and warp specialization allows
low-bit operations to overlap with computation [19], while
Blackwell’s native support for low-precision formats (e.g.,
MXFP4) reduces these overheads by minimizing the need for
on-the-fly data conversion.

Efficiently leveraging Tensor Cores for decoding with low-
bit KV caches poses significant challenges. First, Tensor Cores
require dequantized low-bit data to be aligned with high-
precision formats, which is difficult in autoregressive decod-
ing as the KV cache grows dynamically and must conform
to Tensor Cores-specific layouts. Without optimized layouts,
Tensor Cores may exhibit poor utilization or even produce
incorrect results. Second, the high cost of dequantization can
stall Tensor Cores execution, reducing GPU occupancy due
to mismatched workloads between CUDA cores and Tensor
Cores. Third, supporting low-bit KV caches across diverse
attention mechanisms and quantization algorithms—with vary-
ing tensor-wise and channel-wise scaling—demands a general
yet highly optimized implementation. Without careful design,
either CUDA cores or Tensor Cores become performance
bottlenecks during long-context generation.

To address the above challenges, we have designed and
implemented BitDecoding, a high-performance long-context
LLMs inference system with low-bit KV cache. The design
of BitDecoding delivers several contributions essential for
exploiting Tensor Cores, including: (i) inducing low-bit op-
timized layouts based on hardware instructions, (ii) aligning
warps with residual buffer to saturate Tensor Cores, (iii) re-
mapping layouts for faster dequantization, and (iv) coordinat-
ing kernels for quantization and dequantization. In addition,
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Fig. 2: Comparison of different low-bit KV cache systems
against half-precision FlashAttention. Each system follows
the attention formulation Out = softmax(Q D(K'")) D(V'),
where K’ and V' are low-bit quantized Key and Value tensors,
and D(-) denotes the dequantization function.

we contribute new strategies for parallelizing GPU warps
to mitigate low-bit operations overhead, including (i) effi-
cient warp parallelism layout, and (ii) enhancing attention
algorithms for fast warp synchronization leveraging the GPU
memory hierarchy.

We further contribute implementation techniques in BitDe-
coding for LLMs inference, including: (i) a query transfor-
mation approach that enables efficient execution of diverse
attention variants, allowing BitDecoding to be easily adopted
in existing LLMs; (ii) a high-performance quantization ker-
nel that supports both channel-wise and tensor-wise scal-
ing, ensuring generality across quantization algorithms; and
(iii) a dequantization kernel with a software-defined pipeline
that coordinates CUDA and Tensor Cores for GEMM and
dequantization, while overlapping data movement, including
extra low-bit metadata; furthermore, BitDecoding incorporates
architecture-specific optimizations that unlock Hopper’s warp-
group tensor operations and Blackwell’s native low-precision
tensor formats to maximize decoding performance on the latest
GPU generations.

BitDecoding is evaluated at both the kernel and end-
to-end levels across Blackwell, Hopper, Ada, and Ampere
GPU architectures. At the kernel level, it outperforms FP16
FlashDecoding-v2 by up to 8.6x on Blackwell (e.g., RTX
5090, using native MXFP4 format support), 8.0x on Hopper,
7.5% on Ada, and 4.8x on Ampere, while surpassing QServe
by up to 4.3x. At the end-to-end model level, BitDecoding
reduces single-batch decoding latency by 3x on LLaMA-3.1-
8B with a 128K sequence length and achieves over 4 x higher
serving throughput than QServe.

II. BACKGROUND AND MOTIVATION

LLMs inference and low-bit KV cache. LLMs inference
comprises two stages: (i) Prefill, which processes the prompt
and computes Key (K) and Value (V) tensors for caching;
and (ii) Decode, which updates the KV cache token-by-token
for autoregressive generation. For a model with n layers,
hky KV heads, and hidden size d, the KV cache requires
2-16 -n - hgy - d-b-1 bits (assuming FP16), where b
is the batch size and [ is the sequence length. Because
this requirement grows linearly with both b and [, the KV
cache often dominates memory usage, especially for long-
context and large-batch workloads. In batched inference, each



sequence has an independent past context, so there is little
batch-level parallelism or reuse when loading cached Keys and
Values; consequently, KV-cache access is typically bound by
memory bandwidth. These constraints have spurred extensive
research and industrial efforts on lower-bit KV caches [12],
[18], [36] to reduce memory footprint and improve throughput
while preserving accuracy close to non-quantized baselines.

Tensor Cores and CUDA cores on modern GPUs. When
optimizing LLM inference and low-bit KV caches on GPUs,
it is crucial to exploit both Tensor Cores and CUDA cores.
Tensor Cores deliver the majority of compute FLOPS in
modern GPUs but are specialized for matrix operations (e.g.,
GEMM), whereas CUDA cores provide more flexible vector,
scalar, and control-flow capabilities at substantially lower peak
FLOPS. For example, on the A100, Tensor Cores deliver up to
312 TFLOPS in FP16/BF16—far exceeding the 19.5 TFLOPS
FP32 offered by CUDA cores.

This performance gap has widened significantly in re-
cent generations. The Hopper architecture introduces Warp-
group Matrix Multiply-Accumulate (WGMMA) instructions
and warp-specialized pipelines to maximize asynchronous
execution efficiency. The Blackwell architecture further ex-
acerbates this disparity by supporting native micro-scaling
formats (e.g., MXFP4, NVFP4), delivering up to 20 PFLOPS.

For fast LLM inference, substantial effort has gone into
optimizing attention variants to exploit Tensor Cores. SOTA
LLMs [10], [17], [34] increasingly adopt MQA [26] and
GQA [1], which reduce memory bandwidth by reusing KV
heads across multiple queries. This reuse increases arithmetic
intensity and improves compute efficiency [28], aligning well
with the high-throughput, matrix-centric design of Tensor
Cores. Consequently, leveraging Tensor Cores is becoming
essential for efficient inference in long-context and grouped-
attention LLMs.

Limitations of existing low-bit KV cache systems. To
support low-bit KV caches for long-context LLM inference,
a number of systems have been proposed [16], [18], [37].
However, they often leave GPUs underutilized, leading to sub-
optimal performance. We summarize the key reasons below.

o Attention with separated low-bit KV-cache kernels: The
most straightforward approach, exemplified by Kivi [18],
decomposes mixed-precision attention into multiple stan-
dalone kernels and embeds them in a non-fused attention
implementation. This design is highly flexible and readily
supports many attention variants [1], [26]. Yet the isolated
launches repeatedly load and store intermediate data, in-
flate global-memory traffic, and break on-chip data reuse.
The result is high launch overhead, increased memory
bandwidth pressure, and lower effective throughput.

o Fused attention with low-bit KV-cache kernels on CUDA
cores solely: Given the generality of CUDA cores
for mixed-precision operations, a natural extension of
FlashAttention-style fusion [6] is a CUDA-cores—only
implementation of low-bit KV caches. While this out-
performs non-fused designs, it still underutilizes Tensor
Cores. In these systems, both dequantization and ma-

trix operations (GEMV/GEMM) are executed on CUDA
cores via fused multiply—add (FMA) instructions. Under
mixed precision, CUDA cores must handle expensive
dequantization (e.g., int4/8 — FP16/BF16), scaling, and
element-wise ops—tasks that are memory-bound and
consume instruction slots, register bandwidth, and L1/L.2
capacity. This reduces occupancy and limits tile sizes,
leaving fewer resources for the compute-heavy matrix
multiplications. Consequently, running both dequantiza-
tion and matmul on CUDA cores introduces significant
overhead, especially for attention variants with higher
arithmetic intensity.

ITII. PROPOSED SOLUTIONS AND CHALLENGES
A. Solution: Cooperative use of Tensor Cores & CUDA Cores

In this paper, we want to explore a solution that can
achieve a cooperative use of Tensor Cores and CUDA cores
to support low-bit KV caches during long-context LLMs
inference. Our design introduces new designs and implementa-
tions that (i) construct and schedule matrix multiplications on
Tensor Cores, and (ii) execute non-matrix-multiplication oper-
ations—quantization, packing and dequantization—efficiently
on CUDA cores. To make this cooperation effective, we
balance workloads across the Tensor Cores and CUDA cores
and carefully orchestrate data movement so that dequantization
feeds Tensor-Core GEMM without stalls, memory traffic is
minimized, and end-to-end decoding throughput is maximized.

To ensure broad adoption, we aim to realize this cooperative
design as a system that (i) supports low-bit KV caches
across multiple attention variants (including MHA, MQA, and
GQA), and (ii) spans multiple GPU generations. The former
requires a clean interface that integrates with existing attention
implementations; the latter requires designs that are easy to
adapt, enabling rapid targeting of different GPU backends
while sustaining high decoding throughput.

We expect significant benefits from this proposed solution.
For example, by enabling low-bit decoding that builds on
FlashAttention-3 (FA-3) [25], we can leverage SM90-specific
features—such as warp-specialized pipelines—that yield up
to 6 speedups over prior implementations, avoiding the 35%
throughput penalty associated with legacy SM80 instructions.
Furthermore, this design anticipates the architectural capa-
bilities of Blackwell, where native support for low-precision
formats will drive even more substantial throughput improve-
ments.

B. Open challenges

Although promising, the cooperative use of Tensor Cores
and CUDA cores for low-bit KV caches is particularly chal-
lenging to implement for several reasons:

Challenge 1: Tensor Cores often suffer from low-bit
layout mismatches. Aligning low-bit data layouts with Tensor
Cores requirements is difficult, especially in autoregressive
generation where KV caches expand dynamically.

At runtime, after quantization and packing, the low-bit
KV cache must dequantize into a half-precision layout that
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matches what Tensor Cores expect. This matching is chal-
lenging for three reasons.

First, fragment layouts vary across instructions and GPU
generations. After using the optimized data-movement in-
struction ldmatrix, the fragment residing in registers en-
forces a strict value-to-thread mapping. Fig. 3a illustrates
the registers read by each thread (7") for mma.ml16n8k16
with repeat tiling along the N dimension. However, this
mapping differs from other Tensor Core instructions (e.g.,
mma .m16n8k8) and from Hopper’s wgmma family (e.g.,
wgmma .m64n64k16).

Second, low-precision bitwidths exacerbate alignment is-
sues. Although Tensor Cores instructions require specific
compute types, their rigid, interleaved register layout makes
lower-precision data hard to match directly. Without a layout
transform, the low-bit register layout becomes an invalid
layout for MMA execution due to misalignment with the
interleaved access patterns. As shown in Fig. 3b, two FP16
values originally computed by Thread 0 (T0) may be quantized
and packed as eight consecutive low-bit values in the KV
cache; after unpacking and dequantization, they no longer
align with the expected Tensor Core register layout, yielding
incorrect values. Even with native low-precision formats in
Blackwell, hardware support remains limited, especially for
the KV cache, which still depends on continuous quantization
and packing; software must therefore carefully handle low-
precision values and micro-scaling factors [20].

Finally, dequantization can bottleneck execution: naive low-
bit—FP16 casts are slow [14] and require a friendly layout to
run efficiently. Prior work such as Ladder [33] and Marlin [9]
mitigates mismatch for static weights by inserting separate
layout-transformation kernels, but this adds substantial over-
head and is unsuitable for dynamic decoding. Experimental
details are given in Table II.

Challenge 2: Frequent stalls limit Tensor Cores uti-
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lization. We observe that empirically tuned warp layouts
and partitioning in high-performance attention kernels often
inadvertently degrade low-bit KV-cache performance.

Under FlashAttention’s original warp partitioning, the addi-
tional dequantization (DQ) can substantially reduce throughput
and Tensor Core utilization. As shown in Fig. 4a, FlashAt-
tention assigns a single warp along the N dimension to
perform register-level softmax and the matrix multiplication
PV, with P stored in registers aligned to the Tensor Core
layout. When DQ is inserted before the matmul, this strategy
becomes inefficient: small warp tiles of K or V' must traverse
N sequentially, so DQ frequently stalls the warp. Nsight
Compute profiling [21] in Fig. 4b confirms that the added
DQ overhead increases memory-access stalls and depresses
compute throughput and Tensor Cores utilization, consistent
with prior observations [8].

Furthermore, native low-precision formats introduce their
own overhead despite eliminating dequantization. Specifically,
to utilize low-precision Tensor Cores for the second matrix
multiplication (PV), the probability matrix P must be dy-
namically re-quantized after the softmax operation: Prig =
softmaX(QﬂK}:l), Ofi6 = Quant(Pfi6)Vys. This on-
the-fly quantization creates a new computational bottleneck
that can similarly stall Tensor Cores execution.

Challenge 3: Lack of generalizable system optimizations
for different low-bit KV-cache methods. Popular KV-cache
quantization methods use diverse scaling granularities for the
Key tensor—tensor-wise [12], [37] and channel-wise [13],
[18]—which complicates building a unified system that sup-
ports them all. Online quantization and packing require reduc-
tions and element-wise transforms, adding nontrivial runtime
overhead. Moreover, auxiliary metadata (scale and zero-point)
increases memory traffic and, without careful scheduling, dis-
rupts the load—compute pipeline. Prior mixed-precision kernel
optimizations [9], [33] target static weight quantization and
do not generalize to the dynamic, step-by-step nature of KV
caches. To date, generalizable system-level optimization tech-
niques for high-performance, low-bit KV-cache quantization
are lacking.
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IV. BITDECODING DESIGN

In this section, we present the design of BitDecoding system
which realizes the cooperative use of Tensor Cores and CUDA
cores in supporting low-bit KV cache. The design primarily
contains (i) new methods and principles for optimizing the
low-bit layout in using Tensor Cores, and (ii) new strategies for
parallelizing and coordinating GPU warps that can minimize
the stalls due to dequantization.

A. Methods for optimizing low-bit layout on Tensor Cores

The first challenge our design aims to address is to ensure
BitDecoding can automatically generate an optimized layout
that can fully utilize Tensor Cores across different GPU
generations and different configurations of the low-bit KV
caches. For this, we have designed the following principles
and methods:

(1) Inducing low-bit optimized layout with hardware
instructions. Our design is motivated by a novel insight:
the thread-to-register mapping of 1dmatrix loads data in
Tensor Core’s interleaved fragment layout. As shown in Fig. 5-
(2), if each thread then quantizes and packs locally, the re-
sulting low-bit packing implicitly preserves the half-precision
(FP16) interleaved layout. On unpacking and dequantization,
values already match Tensor Core registers—no global re-
shape is required. Thus, rather than relying on heavyweight
global transforms via manual implementations [9] or iterative
search [33] as in prior methods, we use hardware instructions
to automatically induce a valid low-bit packing layout while
computing. This yields zero-overhead remapping that is ef-
ficient, compatible with Tensor Cores execution, and avoids
extra data movement.

Building on this insight, we design a dedicated GPU Resid-
ual Kernel that fuses computation, quantization, and packing
for newly generated FP16 KV tensors. Using 1dmatrix, we
load the high-precision KV tensor into registers structured for
Tensor Cores, perform the matrix operation (e.g., QK ' or
PV), and then have each thread quantize and pack its portion

in registers (see Fig. 5-(1)). The result is interleaved, layout-
compatible low-bit data written directly to global memory,
updating the low-bit KV cache.

To consume this cache, we introduce a Packing Kernel that
fuses dequantization with computation. To guarantee correct
register layout during unpacking, it mirrors the Residual
Kernel’s instruction configuration which (i) uses the same
ldmatrix variant and (ii) follows the same mma variant
and warp-tiling configuration. Consequently, when the Pack-
ing Kernel loads packed low-bit data via ldmatrix, the
unpacked values are inherently aligned with Tensor Core reg-
isters and can participate in matrix multiplication immediately,
without explicit layout correction.

(2) Aligning warps with residual KV cache to saturate
Tensor Cores. Tensor Cores execute warp-tiled matrix op-
erations, which require input tiles to be fully populated to
achieve optimal throughput. Based on this, our insight is that
by allocating a residual buffer with size matching the tiling
capacity of Tensor Cores, we ensure that low-bit data aligns
with the compute granularity of the hardware to fully utilize
the computing ability of the computing unit.

To implement this idea, we introduce a half-precision resid-
ual KV cache with a residual block size N,. Let X € RL*d
denote the entire KV cache. We partition X into:

Xpack = X[: L — N,

X = Xpaek U Xies, Where
pack es {Xres _ X[L . Nr :}

We define [ as the bit-width for low-bit quantization (e.g.,
B =4 or 2), and w as the word size used for packed storage
(e.g., w = 16 for INT16). The corresponding packing ratio
is given by R = w/f. Let W,, denote the number of warps
along the N dimension, and P,, the number of elements each
warp tile processes (e.g., P, = 8 under mma.m1l6n8k16).
To ensure each Tensor Cores fragment is fully populated for
each warp, the residual block size is computed as:

N, =P, x W, x R (1)

This guarantees that low-bit KV cache fragments align pre-
cisely with the warp-level tiling of Tensor Core operations,
enabling dense, layout-compatible packing and maximizing
compute unit occupancy.

(3) Re-mapping layout for faster dequantization. Though
compatible with Tensor Cores layout, the layout is inefficient
to dequantization due to directly casting low-bit values to FP16
using static_cast introduces significant overhead.

To mitigate this inefficiency, we further design a faster
dequantization mapping approach based on low-level bitwise
operations and instructions inspired by [14]. After loading
packed data into registers using ldmatrix, we cast them
to INT32 before mapping them to the interleaved Tensor Core
layout following the 75316420 pattern. This layout enables
efficient conversion of INT4/INT2 data to FP16 using the
lop3 instruction for bitwise manipulation while aligning with
the Tensor Core computation pattern.

(4) Coordinating Residual and Packing Kernels with
Configuration Setup. This design is executed by coordinating



the Residual and Packing kernels under a unified instruc-
tion configuration. First, the hardware instruction configura-
tion—including 1dmatrix and mma variants—can be deter-
mined based on GPU architectures. With this configuration,
the residual block size N, is computed based on the bit-
width of the low-bit KV cache. As shown in Fig. 5, the
Residual kernel loads high-precision KV entries into registers
via ldmatrix, performs computation using Tensor Cores,
and then fuses quantization and packing before storing the
results into the low-bit KV cache. The Packing kernel, using
the same instruction configuration, loads the packed data into
registers, performs efficient dequantization, and proceeds with
Tensor Core computation.

B. Strategies for parallelizing warps

The second challenge is ensuring BitDecoding avoids the
pitfalls of existing warp-parallelization strategies for mixed-
precision attention, which suffer from low hardware utilization
due to frequent warp stalls. Our key insight is that low-bit
data moves at much higher bandwidth than full precision,
shifting the bottleneck from memory to compute. We therefore
design a warp layout that exploits the GPU memory hierarchy
to parallelize low-precision operations efficiently, minimizing
data movement and substantially improving Tensor Cores
utilization (Table III demonstrates minimal overhead).

(1) Enhancing warps parallelism for low-precision oper-
ations. We introduce a novel warps layout to enable parallel
operations of multiple packed data chunks. Using dequantiza-
tion as an example, we modify the warp partitioning strategy to
better exploit parallelism. As illustrated in Fig. 6, instead of the
original strategy that allocates multiple warps along the M di-
mension, we constrain the allocation to W,,, = 1—leveraging
the fact that the decoding query length is typically small
(< 16)—and reallocate resources to increase the number of
warps along the N dimension (W,,).

By increasing W,,, dequantization stalls can be effectively
mitigated by the Streaming Multiprocessor (SM) warp sched-
uler [24], as multiple warps concurrently execute dequantiza-
tion on packed data before proceeding to Tensor Cores-based
matrix multiplication.

Similarly, this parallelism strategy alleviates the stalls in-
troduced by on-the-fly quantization in native low-precision
attention, ensuring that neither quantization nor dequantization
becomes a serialization bottleneck.

(2) Leveraging memory hierarchy for warps synchro-
nization. However, with results now distributed across dif-
ferent registers and warps, the original register-level softmax
becomes infeasible. Moreover, a key challenge emerges due
to the incompatibility between the new warp layout and the
expected format for MMA operations on PV.

To address this, we leverage a multi-level memory hierar-
chy—spanning registers and shared memory—to enable cross-
warp reduction and synchronization for the softmax computa-
tion. As illustrated in Algorithm 1, we extend existing high-
performance attention algorithms, such as FlashAttention, by
introducing two additional shared memory buffers: sSTMP

Q YV VY s

Multi-warps coorporative softmax m

Fig. 6: Enhancing parallism for efficient Tensor Cores utiliza-
tion with (1) new warp layout design reduces dequantization
stalls and (2) cooperative softmax leverages data movement
between GPU register and shared memory for cross-warp
reduction with minimal overhead.

R%"» and sAcc € RT»>*Tn_ The buffer sTMP facilitates
cross-warp reduction for computing the row-wise maximum
during softmax. This is achieved by first performing intra-warp
reduction within registers, followed by inter-warp reduction
via shared memory. The buffer sAcc temporarily stores the
attention scores P computed in Tensor Core registers and later
reloads them via 1dmatrix, ensuring proper alignment for
subsequent Tensor Core mma operations.

Since W, is typically small, we reuse the shared memory
pointer of sT M P for sAcc to minimize memory overhead.
Moreover, on Hopper Tensor Cores, WGMMA supports direct
shared memory access, eliminating the need for explicit data
movement from shared memory to registers.

Algorithm 1 Multi-warps Cooperative Softmax

Require: sTMP € R"" and sAcc € RT»*Tn in SMEM.

Require: Load QZ € RTm*4 and K;, V; € RT*4 t0 REG.
1. S; = QK] where S; € RTm>*Tn,

m; Y = max(ml, rowmax (S;, sT M P)).

P; = exp(S; — mP®™) where P; € RTm*Tn,

sAcc = tiled_copy_r2s(P;).

P/ = tiled_copy_s2r(sAcc)

O = P[V; + diag(e™ ™"

AN

)O:.

V. SYSTEM IMPLEMENTATION

In this section, we describe how we implement BitDecod-
ing, as illustrated in Fig. 7. Our implementation consists of
three major components: (i) a query transformation component
that supports diverse attention variants in LLMs; (ii) a Residual
Kernel that performs low-cost quantization and packing while
remaining general to both tensor-wise and channel-wise scal-
ing across quantization algorithms; and (iii) a Packing Kernel
with a fine-grained pipeline that fully utilizes both Tensor
Cores and CUDA cores. Finally, we discuss architecture-
specific optimizations that leverage the advanced features of
the latest GPU generations (e.g., Hopper and Blackwell) to
further enhance decoding throughput.
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Fig. 7: System overview of BitDecoding. (1) Query Transformation restructures the query tensor layout to enable efficient
warp-level execution for attention variants on Tensor Cores. (2) Residual Kernel performs quantization and packing with
minimal overhead, supporting both tensor-wise and channel-wise scaling. (3) Packing Kernel executes dequantization and
matrix multiplication using a fine-grained, asynchronous pipeline, maximizing Tensor Cores and CUDA Cores utilization with

low-bit parameters.

A. Query Transformation

Modern LLMs adopt diverse attention variants [10], [17],
[34] with different key—value (KV) sharing patterns. BitDe-
coding aims to support all these variants.

For instance, in GQA and MQA, multiple query heads
share a KV head, reducing the number of KV projections
and memory accesses. The degree of sharing is measured by
9q = hq/hiy, where hq and hy, are the numbers of query and
KV heads, respectively: g, = 1 corresponds to MHA, g, > 1
denotes GQA, and hy,, = 1 (i.e., g, = hg) characterizes MQA.

A challenge arises in decoding: since ()_len = 1 (one token
at a time), the query tensor has a very small batch dimension,
and a naive @) - KT underfills Tensor Cores, yielding poor
warp occupancy and low throughput.

To address this, we perform a query transformation that
reorganizes the query layout to better match Tensor Core tiling.
As illustrated in Fig. 7 (left), we reshape the query tensor
from [1, (g4, Pkv)] t0 [gg, Pio], effectively forming a larger @
tile without changing the semantics of attention or its KV-
sharing pattern. Grouped query heads are then processed in
parallel as a larger GEMM block, fully populating Tensor
Core fragments, improving warp occupancy, and increasing
throughput.

B. Residual Kernel

A primary challenge in low-bit KV-cache design is support-
ing diverse quantization algorithms—especially differing scal-
ing granularities (e.g., tensor-wise, channel-wise)—without
sacrificing performance. Quantization involves reductions and
element-wise operations to compute scale and zero-point, fol-
lowed by bit-packing; during decoding these must run online,
adding runtime overhead and risking misalignment with the

rigid layouts expected by Tensor Cores. To address this, we
design the Residual Kernel with two key optimizations:

(1) Partitioning KV cache based on residual block
size. During prefill with context length L, we split the KV
cache based on a Tensor Cores-aligned residual block size
N, (see Eq. 1). The first N, = L — (L mod N,) entries
are quantized and packed into the low-bit KV cache using a
fused quantization and packing operation. The remaining KV
Tensor with size res_len = L mod N, are stored in the
half-precision residual KV cache. At each decode step, the
newly generated K,V tensors are appended to the residual
cache and used for attention computation. This cache grows
incrementally until it reaches the residual block size N,.. Once
per token generation, the Residual Kernel computes attention
using the half-precision residual KV cache and optionally
quantizes it (when res_len = N,.) into packed format.

With this KV cache partitioning during decoding, we can
naturally perform channel-wise quantization along the seq_len
and tensor-wise quantization along the hidden dimension
within the residual block.

(2) Optimizing reduction with warp-level instructions.
As shown in Fig. 7 (mid), once the half-precision KV data
is computed, it remains in registers as Tensor Cores frag-
ments—structured in the native interleaved layout used by mma
operations. To efficiently compute the quantization parameters
(scale and zero-point), we first perform thread-level reductions
to obtain local min/max statistics within each group.

These local results are then aggregated across the warp using
the PTX instruction __shfl_xor_sync, enabling efficient
warp-level reduction without shared memory. When the warp
repetition factor WW,, > 1, we introduce a small shared memory
buffer to coordinate the final reduction across warps.



After computing the quantization parameters, each thread
performs in-register quantization and packs the low-bit values
into INT16 format. This avoids extra memory movement
and keeps data in a computation-ready state. To minimize
overhead, both the scale and zero-point are stored in a compact
half2 format, enabling efficient memory access and fused
multiply-add during dequantization in the decode phase.

C. Packing Kernel

Another challenge is the auxiliary low-bit metadata (scale
and zero-point), which increases memory traffic, while de-
quantization still runs on CUDA cores. Without careful
scheduling, this disrupts the load—compute pipeline and pre-
vents overlap with Tensor Core operations. We therefore de-
sign a fine-grained asynchronous pipeline: CUDA cores handle
dequantization, Tensor Cores execute matrix multiplications,
and both are orchestrated to overlap with memory trans-
fers through the GPU hierarchy—enabling efficient mixed-
precision computation.

(1) Optimizing asynchronous data movement. From
Global to Shared Memory, we follow FlashAttention [6] via
block-wise tiling [32] and strategic recomputation. It processes
input matrices Q € RT»*4 K.V € RT»*? in tiles within
shared memory, using block sizes T}, and T,,. The number of
key-value tiles is C,, = [L/T,].

To efficiently manage quantization parameters, we introduce
dedicated shared memory buffers for quantization paramenter
Kpacr, params (K ) and Vi, param (V)), facilitating efficient
tiling for memory copy. These buffers store scale and
zeros in the half2 format, allowing them to be loaded
in a single instruction.

The shape of K, is determined by the quantization granu-
larity setting, and the V), follows a Tensor-wise layout:

o Channel-wise: (7,,/group_size, d).

o Tensor-wise: (T),,d/group_size).

To achieve optimal memory overlapping, all global-to-
shared memory transfers are executed asynchronously using
the cp . async intrinsic, ensuring efficient pipeline execution,
as shown in Fig. 7 (right). We optimize memory transactions
using instructions with different caching strategies:

e cp.async.cg: Used for @, Kpuk, and Viek, which
cache only in global memory as they are not reused within
the same kernel.

e cp.async.ca: Applied to K, and V}, ensuring smaller
byte-level alignment for fine-grained memory access.

In Hopper architecture, we follow FA3, leveraging the
tma . copy instruction for data loading. This facilitates warp-
specialized scheduling, improving data locality and reducing
memory latency across multiple warps.

From Shared Memory to Register, we use the PTX instruc-
tion ldmatrix to efficiently load Kpak, Vpack and sAcc
from shared memory into registers with the Tensor Cores
tiling layout. To eliminate bank conflicts, we use a sizzling
scheme [5] defined as:

col;g = row;q ® colyy 2)

achieve bank conflict-free access. Additionally, we restructure
the shared memory layout of K, and V), to further reduce bank
conflict and maximize throughput efficiency.

(2) Asynchronous pipeline for overlapping CUDA Cores
and Tensor Cores. To fully utilize both CUDA cores and
Tensor Cores, we implement a register-level, asynchronous
pipeline that overlaps computation with memory operations.
In this pipeline, shared-memory loads via ldmatrix and
dequantization (Dequant) run concurrently with Tensor Core
matrix multiplications (mma) under the SM warp scheduler.

As shown in Fig. 7 (right), while the i-th slice is being
processed by mma on Tensor Cores, the (i + 1)-th slice is
simultaneously loaded from shared memory (1dmatrix) and
dequantized. This sustains a continuous producer—consumer
flow, improving instruction throughput and maximizing uti-
lization of both CUDA cores and Tensor Cores.

D. Latest Architectures Support

While the design presented thus far effectively targets
pre-Hopper architectures (e.g., Ampere), newer generations
introduce distinct hardware features that require tailored opti-
mization strategies. Below, we detail how our approach adapts
to leverage the specialized instructions and native data formats
of the Hopper and Blackwell architectures.

(1) Unlocking Hopper for warpgroup acceleration ca-
pabilities via smart uses of PTX-level instructions. Hop-
per Tensor Cores, increasingly introduce Warpgroup Matrix
Multiply-Accumulate (wgmma) instruction. This instruction
however imposes a key constraint: in a matrix multiplication
C = AB, only A and C' can be sourced from registers, while
B must reside in shared memory. This presents a challenge
for low-bit quantized data, as values are typically upconverted
to FP16 in registers before computation. To resolve this, we
leverage Hopper’s STSM PTX instruction to store dequantized
FP16 values in shared memory efficiently, accessible for
wgmma_SS operations. Remarkably, the asynchronous nature
of WGMMA overlaps storage with computation, optimizing
performance.

(2) Accelerating Blackwell with native low-precision
format. The Blackwell architecture introduces native support
for low-precision tensor operations, eliminating the need for
explicit dequantization. Consequently, the lop3-based reg-
ister remapping described earlier is bypassed in favor of
direct execution. We target Blackwell’s low-precision mma
instructions—specifically those supporting the micro-scaling
formats (e.g., mxfp4 / nvfpd)—to execute GEMM oper-
ations directly on packed 4-bit data. While these instructions
enforce rigid layout constraints for both the packed values and
their block-scaling factors, the layout transformation strategy
proposed in Section IV-A is designed to be layout-agnostic. It
automatically aligns the packed KV data with the hardware-
mandated format, ensuring seamless integration with Black-
well’s native tensor pipelines.

VI. EVALUATION

In this section, we comprehensively evaluate BitDecoding
against state-of-the-art approaches and systems. Our evaluation
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Fig. 8: Kernel performance with mxfp4 on Blackwell architectures.

highlights the following key results:

1) BitDecoding outperforms FP16 FlashDecoding-v2 by
significant margins across GPU generations, achieving
speedups of up to 8.6x on Blackwell (using native
MXFP4), 8.0x on Hopper, and 7.5x on Ada archi-
tectures, while surpassing the state-of-the-art low-bit
system QServe by up to 4.3x (Section VI-A).

2) In end-to-end long-context inference, BitDecoding re-
duces single-batch latency by 3x (on LLaMA-3.1-8B
with 128K context) and achieves over 4x higher serving
throughput than QServe, demonstrating superior scala-
bility in GQA settings where prior CUDA Core-only
methods degrade (Section VI-B).

3) BitDecoding preserves near-FP16 accuracy while de-
riving significant performance gains from each system
component, demonstrating only a 0.2% accuracy degra-
dation with 4-bit quantization, while our ablation study
confirms that every design module contributes to the
overall speedup (Section VI-C).

A. Kernels Performance Across GPU Architectures

Kernels Settings. Since different LLM serving scenarios
require varying workloads and attention kernel designs, we
evaluate performance under the following three representative
settings:

o Single: A scenario where batch_size = 1, representing

inference for edge users with long context.

« Batches: A setting with a larger batch_size, maintaining
the same input length while applying simple padding.

o Page: A high-throughput scenario where a larger
batch_size is managed using the page management tech-
nique [15].

Baselines. We compare BitDecoding against several rep-
resentative attention kernel implementations. For FP16 KV
cache, we use FlashDecoding [6], [25]—a split-partitioned
variant of FlashAttention optimized for long-context decod-
ing—as our baseline for speedup normalization. For low-bit
KV cache, we evaluate Kivi [18], a non-fused kernel support-
ing 4-bit and 2-bit quantization; Atom [37] and QServe [16],
both fused-kernel implementations with CUDA Cores-only
approach and supporting 4-bit cache with page management.
Notably, Atom does not support GQA.
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Fig. 9: Kernel performance on Hopper (H100).

Quantization Settings. We evaluate BitDecoding under
various quantization configurations, supporting 4-bit and 2-bit
Key tensors with both Channel-wise (KC) and Tensor-wise
(KT) schemes.

Results on MXFP4 / NVFP4 (RTX5090, RTX PRO
6000). The Blackwell architecture provides native support for
low-precision data formats, eliminating on-the-fly dequantiza-
tion overhead while delivering very high compute through-
put on low-bit operations. As shown in Fig. 8a, BitDecod-
ing achieves remarkable performance, reaching up to 8.6x
speedup in batched scenarios and over 4.3x in single-batch
long-context decoding (128k), significantly outpacing the non-
fused attention baseline. Similarly, Fig. 8b demonstrates that
the RTX PRO 6000 attains substantial gains, peaking at 6.5x
speedup with large batch sizes.

Results on Advanced Tensor Cores Acceleration (H100).
Newer GPU architectures often introduce advanced compute
instructions that significantly accelerate kernel execution. As
illustrated in Fig. 9, FlashDecoding-v3, optimized for Hopper
Tensor Cores, delivers notable performance gains over its
v2 counterpart. While BitDecoding-v2 reaches up to 4.1x
speedup, the v3 implementation further boosts performance
to 8.0x. This is enabled by BitDecoding’s use of Hopper’s
wgmma and asynchronous memory instructions, ensuring high
Tensor Cores utilization even in mixed-precision settings.

Results on Bandwidth-constrained GPU (RTX 4090).
Leveraging low-precision data is critical for accelerating infer-
ence on bandwidth-constrained GPUs. As shown in Fig. 10,
BitDecoding achieves roughly 4x (4-bit) and over 7x (2-
bit) speedups over FlashDecoding-v2 in Single and Batches
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Fig. 11: Kernel performance on A100.

settings, gains that stem directly from alleviating DRAM
bottlenecks via low-bit KV caching.

BitDecoding significantly outperforms baselines across all
scenarios; unlike the non-fused KIVI, which relies on separate
kernels and suffers severe degradation in GQA, BitDecod-
ing’s fully fused design maintains high efficiency. In Page
settings, it surpasses fused CUDA-core baselines: for MHA,
BitDecoding achieves over 6x speedup compared to QServe’s
3.5%. Crucially, in compute-intensive GQA, it maintains a
3x speedup while QServe drops to 1.4x, confirming that
leveraging Tensor Cores provides robust acceleration where
CUDA-only approaches falter.

Results on High-Bandwidth GPU (A100). On architec-
tures with high memory bandwidth like the A100, compu-
tation pressure becomes more pronounced, as performance
bottlenecks shift from memory access to compute utiliza-
tion—especially when kernel designs fail to fully exploit
available compute resources. As shown in Fig. 11, both KIVI
and QServe suffer from poor performance—KIVI due to its
non-fused kernel design, and QServe due to underutilization of
Tensor Cores—even performing worse than the FP16 baseline.
In contrast, BitDecoding consistently outperforms all baselines
across workloads, achieving up to 3x speedup, thanks to

its efficient utilization of Tensor Cores and fused execution
pipeline. An interesting observation is that the performance
gap between 4-bit and 2-bit variants narrows on A100, as
the increased DRAM bandwidth reduces memory bottlenecks
and shifts the performance balance toward compute-bound
execution.

B. Performance across LLMs Inference Systems

Model settings. We evaluate on a range of LLMs, including
LLaMA-2-7B, LLaMA-3.1-8B, LLaMA-3.1-70B, Qwen3-8B,
and Qwen3-14B. Among them, only LLaMA-2-7B adopts
MHA, while the others use GQA. All models are run on a
single A100 GPU, except LLaMA-3.1-70B, which is evaluated
on 8xA100 GPUs.

Quantization settings. We choose channel-wise quantiza-
tion for LLMs KV cache as it brings better accuracy and aligns
with the Kivi.

Compared with Non-fused Attention. As illustrated in
Fig. 12, in the Single setting, BitDecoding achieves up to 3.3 x
speedup at a 128K context length, where KV cache loading
becomes the dominant bottleneck in LLMs inference. In con-
trast, Kivi suffers from limited scalability and encounters out-
of-memory (OOM) failures at 128K due to the lack of block-
tiling kernel support. For the Batches setting, BitDecoding sig-
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nificantly outperforms KIVI in throughput: BitDecoding-KC-
4 and KC-2 reach up to 900 and 1200 tokens/s, respectively,
while KIVI-4 and KIVI-2 peak below 700 tokens/s.

Compared with CUDA Cores-only fused Attention. We
compare BitDecoding with Qserve for page-setting inference,
as Qserve supports both MHA and GQA attention structures.
The maximum throughput is evaluated under the largest batch
sizes available within GPU memory. As illustrated in Fig. 13,
Qserve achieves higher throughput than FlashDecoding-v2
on LLaMA-2-7B but suffers from degraded performance on
all other models due to inefficiencies in handling GQA. In
contrast, BitDecoding consistently outperforms QServe across
both LLaMA and Qwen architectures, under both single-
GPU and multi-GPU settings, achieving more than 2x higher
maximum throughput compared to QServe.

C. Accuracy, Overhead and Performance Breakdown

Accuracy analysis. As shown in Table I, we evaluate
throughput and accuracy across different bit widths. The 2-
bit quantization reduces memory consumption significantly,
enabling larger batch sizes and achieving a 4.25x higher
throughput compared to FP16. Meanwhile, the 4-bit quanti-
zation achieves a 2.98 x speedup while maintaining near full-
precision accuracy with only a minimal 0.2% degradation.
These results highlight the trade-off, with 4-bit quantization
offering balance and 2-bit maximizing throughput at a slight
accuracy cost.

Half-precision Residual Kernel Overhead. Half-precision
residual KV Cache would introduce quite a small portion
memory overhead as seq_len >> N,., while seq_len would

TABLE II: Latency (ms) comparison of quantization and
packing during inference.

Inference Phase Marlin Ladder BitDecoding
Prefill 58.02 4.79 0.0599
Decode 0.41 0.65 0.008

TABLE III: Impact of cooperative softmax and warps on
performance and validity.

W,  Coop. Soft Latency (ms) TCs Utilization (%) Valid
1 X 3.746 10.91 v
4 X 0.610 19.71 X
4 v 0.613 19.66 v

be more than 32K and N, is always less than 256. The
half-precision residual KV cache introduces only a slight
runtime overhead due to an extra kernel launch, as shown
in Fig. 14. Moreover, this overhead becomes increasingly
negligible as the sequence length grows, since the residual
portion constitutes a smaller fraction of the total KV cache.

Quantization and Packing Overhead. We evaluate the
latency of quantization and packing under a sequence length of
seq_len = 128 K, comparing BitDecoding with Marlin [9] and
Ladder [33]. As shown in Table II, the pre-transformation and
packing step in previous mixed-precision computing methods
introduce significant overhead, which cannot be ignored. Our
kernel incurs minimal overhead after the Prefill phase, primar-
ily due to kernel launch overhead. Moreover, during decoding,
we achieves nearly negligible overhead, as it is fully fused into
kernel computation.

Dequantization Overhead. Fig. 15a illustrates the high
computational overhead of dequantization in Atom and
QServe, consuming nearly half the kernel execution time. In
contrast, BitDecoding significantly reduces this overhead to
less than 15% (4-bit) and 35% (2-bit), thanks to better Tensor
Cores overlap.

A further microbenchmark comparing Atom and BitDe-
coding (Fig. 15b) reveals BitDecoding’s superior memory
throughput from effective Tensor Core usage. Conversely,
Atom relies heavily on CUDA cores, increasing pressure on
FMA and ALU operations.

Multi-warps Cooperative Softmax Overhead. Table III
shows that increasing W,, improves Tensor Cores utilization
and reduces latency, but breaks correctness without coopera-
tive softmax. Enabling cooperative softmax restores correct-
ness with only 0.5% overhead. Although it introduces shared
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memory access, the overhead is minimal since low-bit data
reduces memory bandwidth pressure and shifts the kernel from
memory-bound to compute-bound.

BreakDown Analysis. To further analyze the performance
gains of BitDecoding, we decompose our optimizations in
Fig. 16. Following [2], we use a continuous-packing baseline
that quantizes and packs the KV cache at every generation
step, which introduces substantial overhead and requires man-
ual effort to maintain valid layouts. In contrast, our layout
design automatically induces Tensor Core—compatible layouts
for arbitrary low-bit formats, fully unlocking the compute
potential of Tensor Cores. On top of this, the warp-parallelism
strategy contributes significant additional speedups, while
the pipeline optimizations further enhance end-to-end perfor-
mance.

VII. RELATED WORKS

a) KV Cache Quantization Algorithms: KV cache quan-
tization reduces memory usage in LLMs with long contexts
while maintaining performance. Recent works explore 4-bit,
2-bit, and even 1-bit KV cache quantization, aiming to push
the limits of compression. Methods like KIVI [18], Gear [13],
and KVQuant [12] use per-channel quantization to handle key-
value outliers, while RotateKV [27] applies rotation to smooth
channel-wise distributions. Although effective at higher com-
pression ratios, these methods lack efficient system implemen-
tations, leading to suboptimal performance.

b) Mixed-precision Matrix Multiplication: Low-bit
weight and low-bit KV cache in LLMs create a unique
requirement for mixed-precision matrix multiplication
(mpGEMM), where one input matrix is in lower precision
(e.g., INT4/2/1) while the other matrix remains in
higher precision (e.g., FP16/8). Optimized kernels like
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B Layout

B Layout + Warps

B Layout + Warps + Pipeline

Speed Up

H100
Architecture

Fig. 16: Breakdown of BitDecoding optimizations across ar-
chitectural generations.

Ladder [33] and Marlin [9] improve performance via layout
transformations and efficient dequantization. However, these
methods require pre-packing and pre-transforming weights,
limiting applicability to low-bit KV cache in autoregressive
decoding.

c) System Implementation for Low-bit KV Cache:
KIVI [31] uses Triton with separate kernels for low-bit
KV Cache implementation. Atom [37] integrates quantization
within the preceding linear layer, while QServe [16] fuses
quantization directly into FlashAttention kernels. However,
they both rely on GEMV operations with fused multiply—add
(FMA) instructions, missing Tensor Core acceleration.

VIII. CONCLUSION

BitDecoding establishes a new system foundation for ef-
ficient low-bit KV-cache decoding by demonstrating how
CUDA cores and Tensor Cores can be cooperatively orches-
trated using principled system designs. Its layout-induction and
warp-level coordination techniques generalize across attention
variants, quantization schemes, and GPU generations, and nat-
urally extend to emerging architectures such as Blackwell and
even beyond. We expect BitDecoding to enable future work on
algorithm—system co-design for KV-cache quantization, near-
lossless test-time scaling, and more capable GPU execution
models for long-context LLMs inference.
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