
Refining Salience-Aware Sparse Fine-Tuning
Strategies for Language Models

Xinxin Liu1,2 Aaron Thomas3 Cheng Zhang4 Jianyi Cheng5 Yiren Zhao4 Xitong Gao2,6*

xx.liu@siat.ac.cn amt326@student.bham.ac.uk cheng.zhang122@imperial.ac.uk
jianyi.cheng@ed.ac.uk a.zhao@imperial.ac.uk xt.gao@siat.ac.cn

1 Southern University of Science and Technology 2 Shenzhen Institutes of Advanced Technology, CAS
3 University of Birmingham 4 Imperial College London 5 University of Edinburgh

6 Shenzhen University of Advanced Technology

Abstract

Parameter-Efficient Fine-Tuning (PEFT) has
gained prominence through low-rank adapta-
tion methods like LoRA. In this paper, we focus
on sparsity-based PEFT (SPEFT), which intro-
duces trainable sparse adaptations to the weight
matrices in the model, offering greater flexi-
bility in selecting fine-tuned parameters com-
pared to low-rank methods. We conduct the
first systematic evaluation of salience metrics
for SPEFT, inspired by zero-cost NAS proxies,
and identify simple gradient-based metrics is
reliable, and results are on par with the best
alternatives, offering both computational effi-
ciency and robust performance. Additionally,
we compare static and dynamic masking strate-
gies, finding that static masking, which prede-
termines non-zero entries before training, deliv-
ers efficiency without sacrificing performance,
while dynamic masking offers no substantial
benefits. Across NLP tasks, a simple gradient-
based, static SPEFT consistently outperforms
other fine-tuning methods for LLMs, providing
a simple yet effective baseline for SPEFT. Our
work challenges the notion that complexity is
necessary for effective PEFT, while our open-
source framework establishes a reproducible
benchmark for future research1.

1 Introduction

Pretrained large language models (LLMs) have
demonstrated strong performance across various
natural language processing (NLP) tasks (Brown
et al., 2020). A typical approach for adapting
these LLMs to specific downstream tasks involves
fine-tuning their trainable parameters. However,
this process can be prohibitively expensive on
consumer-grade hardwares, if we consider train-
ing all free parameters, especially on LLMs ex-
ceeding a billion parameters. For example, models
with over 100 billion parameters, such as BLOOM,

*Corresponding author: xt.gao@siat.ac.cn.
1Available at: https://github.com/0-ml/speft.

required training with 384 GPUs across 48 dis-
tributed computing nodes (Luccioni et al., 2023).
Instead of training all parameters, an alternative
fine-tuning paradigm that enables model training
on new tasks with minimal computational resources
is Parameter-Efficient Fine-Tuning (PEFT). This
method aims to learn only a small set of parame-
ters in order to adapt the model to the new task,
substantially lowers the computational resource re-
quirements (Ansell et al., 2021; Hu et al., 2021).

Existing effort on PEFT methods mainly fo-
cuses on two categorizes, low-rank-based and
sparsity-based adaptation approaches. LoRA (Hu
et al., 2021), a popular low-rank adaptation method
reparameterizes the model weight of each layer
(θ ∈ Rd1×d2) as θ ≜ θ0 + BA, where θ0
denotes the pretrained weight matrix which re-
mains fixed during fine-tuning, B ∈ Rd1×r and
A ∈ Rr×d2 are trainable weights of a lower rank
with r ≪ min{d1, d2}. Recently, sparsity-based
PEFT (SPEFT) has emerged as an alternative ap-
proach which constructs an alternate reparameter-
ization, θ ≜ θ0 + θsp, where θsp is an extremely
sparse matrix, and updates solely its non-zero en-
tries. Figure 1 illustrates the distinction between
the two categories of PEFT methods. Previous
sparse PEFT methods (Guo et al., 2020; Sung
et al., 2021; Ansell et al., 2021) have employed
various first- and second-order metrics for deter-
mining these non-zero entries and adopted distinct
approaches for handling the sparsity mask during
training. The varying constructions and training-
time treatments of the sparsity mask lead us to the
following research questions on the basic design
principles for SPEFT:

• Which salience metric or proxy is optimal for
determining a sparsity mask?

• Is a static mask determined prior to the start

mailto:xx.liu@siat.ac.cn
mailto:amt326@student.bham.ac.uk
mailto:cheng.zhang122@imperial.ac.uk
mailto:jianyi.cheng@ed.ac.uk
mailto:a.zhao@imperial.ac.uk
mailto:xt.gao@siat.ac.cn
mailto:xt.gao@siat.ac.cn
https://github.com/0-ml/speft

Sparse
(sparsity)Low-rank

(rank)

LoRA SPEFT

Zero-cost proxy for
picking trainable weights

Trainable params

Zero-cost
proxy

Frozen trained params Sparse matrix Layer input

Figure 1: Comparison between LoRA (Hu et al., 2021) and SPEFT. LoRA freezes pretrained weights θ0 and
updates the low-rank terms A and B, while SPEFT adopts zero-cost proxies to build a sparse adapter θsp, to update
the weight elements that contribute most to the downstream task.

of training sufficient, or is a dynamically up-
dated pruning mask preferable?

In this paper, we systematically re-examine the
design principles for SPEFT and conduct an evalua-
tion across distinct salience metrics. Drawing inspi-
ration from recent advancements in zero-cost Net-
work Architecture Search (NAS) proxies, which
explore diverse low-cost proxies for determining
parameter importance that has incorporated both
first-order (e.g., weight magnitude, gradients, SNIP
(Lee et al., 2019b), etc.) and second-order estima-
tors (e.g., GRaSP (Wang et al., 2020), Fisher in-
formation (Sung et al., 2021), etc.), we discovered
that these NAS proxies encompasses many salience
metrics used in SPEFT for sparsity mask construc-
tion (DiffPruning (Guo et al., 2020), FishMASK
(Sung et al., 2021), etc.). Consequently, inspired
by recent zero-cost NAS metrics that have shown
strong performance to construct sparsity masks,
we are the first to comprehensively evaluate 8 dif-
ferent salience metrics in the context of SPEFT
for LLMs. Furthermore, we investigate both dy-
namic and static masking approaches, where a
dynamic mask matrix τ changes during training,
while a static mask maintains a static τ binary ma-
trix throughout the PEFT process. We make the
following contributions:

• We systematically evaluate 8 different salience
metrics for constructing sparsity masks in
SPEFT and empirically show that gradient-
based SPEFT offers strong performance,
while second-order metrics, such as Fisher
information, do not significantly enhance

SPEFT performance.

• We found that dynamic masking strategies do
not surpass the effectiveness of a simple static
mask predefined before training in SPEFT.
This approach affords greater acceleration op-
portunities, as fixed indices are predetermined
and this avoids the mask re-computation cost.

• Our results indicate that a simple gradient-
based, static SPEFT method delivers the best
trade-off between effectiveness and efficiency.
For instance, for RoBERTa-base (Liu et al.,
2019) on MRPC (Dolan and Brockett, 2005)
task, our method achieves 0.98% higher than
the baseline given the same amount of train-
able parameters. Gradient-based SPEFT out-
performs LoRA by 22.6% on GSM8k (Cobbe
et al., 2021) when trained on MetaMathQA
(Yu et al., 2024). Consequently, we advo-
cate for this SPEFT variant to be considered a
strong baseline for subsequent developments
in this field.

2 Related Work

2.1 PEFT Methods

With the advent of large language models, fine-
tuning these models on downstream tasks can be
prohibitively expensive due to the sheer number of
trainable parameters. A suite of parameter-efficient
fine-tuning (PEFT) methods have been proposed to
address this issue.

Low-rank adaptation (Hu et al., 2021) is a
popular method in PEFT which reparameterizes

the weight matrix of each layer (θ ∈ Rd1×d2) as
θ = θ0+BA. Here, θ0 ∈ Rd1×d2 is the pretrained
weight matrix, and B ∈ Rd1×r and A ∈ Rr×d2 are
lower-rank matrices with r ≪ min(d1, d2). By
making only A and B trainable, this method sig-
nificantly reduces the number of trainable parame-
ters, thereby lowering computational resource re-
quirements. LoRA has demonstrated effectiveness
in reducing trainable parameters for fine-tuning
large language models, while maintaining strong
fine-tuned performance across various downstream
tasks compared to full fine-tuning.

Sparsity-based adaptation Since the advent of
low-rank adaptation, sparsity-based adaptation has
emerged as an alternative approach to PEFT. It
constructs sparse trainable matrix θsp reparameter-
ization for each layer weight θ = θ0 + θsp, where
|θsp|0 ≤ s ≪ d1 × d2, and s represents the num-
ber of non-zero entries. The gradient updates only
happen to the non-zero entries of the sparse ma-
trices during fine-tuning. Since the sparse matrix
θsp is typically constructed to be extremely sparse,
this approach can also achieve notable parameter
efficiency, and the sparsity masking strategy plays
a crucial role in determining impactful trainable
parameters for fine-tuning.

This approach has been explored in various
forms in the literature. Earlier works such as Diff-
Pruning (Guo et al., 2020) learns a sparsity mask
with straight-through gradient estimator (Bengio
et al., 2013; Hubara et al., 2016) to select impor-
tant parameters for downstream tasks. FishMASK
(Sung et al., 2021) applies a static sparsity mask
from training outset, guided by Fisher information
to measure sparsity. Beyond static masks, Fish-
DIP (Das et al., 2023) further allows the Fisher
information-based mask to be updated dynami-
cally during training. Inspired by the lottery ticket
hypothesis (Frankle and Carbin, 2019), LF-SFT
(Ansell et al., 2021) finds that sparse masks ob-
tained by selecting the parameters with the largest
changes after fine-tuning on a task can be trans-
ferred to other tasks. However, this approach re-
quires full fine-tuning on an initial task, which may
not be feasible for resource-constrained settings.
This paper explores the design principles for con-
structing the sparsity mask with low-cost salience
metrics and the impact of dynamic versus static
masks on the fine-tuning process.

Finally, sparsity-based adapters also allow highly
granular control over trainable parameters, and can
enable the use of existing knowledge transfer tech-

niques, such as mixtures of sparse experts (Xu et al.,
2024) and multi-task learning with sparse masks
(Sun et al., 2020) in LLMs.

2.2 Salience Proxies for Sparsity Masking

The extensive research on low-cost salience metrics
for fine-grained network pruning has provided a
rich set of pruning-at-initialization metrics to deter-
mine the importance of neural network parameters.
These metrics can be broadly classified into first-
and second-order categories. First-order metrics in-
clude weight magnitude (Han et al., 2015), connec-
tion sensitivity (SNIP) (Lee et al., 2019a), foresight
connection sensitivity (FORCE) (de Jorge et al.,
2021), Taylor-FO (Molchanov et al., 2019), Syn-
Flow (Tanaka et al., 2020), and finally, the gradient
of the loss with respect to the weight. Second-order
metrics comprise GRaSP (Wang et al., 2020) and
Fisher information-based metrics (Liu et al., 2021).
Coincidentally, both FishMASK (Sung et al., 2021)
and Fish-DIP (Das et al., 2023) propose to use
Fisher information to construct the sparsity mask:
while FishMASK uses a static mask, Fish-DIP fur-
ther allows the mask to be updated periodically
during fine-tuning. These metrics are designed to
identify important parameters or connections in a
neural network. In this paper, we explore the im-
pact of these salience metrics on fine-tuning by
using them to construct sparse masks for PEFT.

3 Method

3.1 Problem Formulation

Given a pretrained model fθ0 with initial parame-
ters θ0, a datasetDtrain, and a downstream task loss
function L, the goal of sparse parameter-efficient
fine-tuning (SPEFT) is to find a set of sparse train-
able parameters θsp, that minimizes the loss func-
tion on the training dataset Dtrain:

θ⋆
sp = argminθspE(x,y)∼Dtrain

[
L(fθ0+θsp(x); y)

]
.

(1)
To ensure the sparsity of θsp, we constrain it with
1[θsp ̸= 0] = τ , where 1[·] is the indicator func-
tion, τ ∈ {0, 1}d1×d2 is the sparsity mask with
|τ |0 ≤ ρ ≪ d1 × d2, where ρ is the number of
non-zero entries. This opens up the flexibility of
τ design, i.e., selecting the non-zero locations in
θsp to update during fine-tuning, which can be de-
termined by various salience metrics as discussed
below in Section 3.2.

3.2 Salience Metrics

In this section, we describe the 8 salience metrics
which can be used to determine the importance of
weights θ. Assume that x is the sampled input,
ℓ ≜ L(fθ(x); y) is the loss function, ⊙ denotes
element-wise multiplication, and |·| denotes the
element-wise absolute value. For simplicity, we
also assume all data-aware metrics to be expec-
tations over the training dataset (x, y) ∼ Dtrain,
which can be approximated by sampling from it.
We have the following 6 1st-order salience metrics:

• Magnitude: |θ|, where simply the magnitude
(i.e., absolute value) of the weight is used.

• Gradient: ∂ℓ
∂θ , which is the gradient of the loss

with respect to the weight θ.

• SNIP (single-shot network pruning):∣∣ ∂ℓ
∂θ ⊙ θ

∣∣, the connection sensitivity metric
proposed in (Lee et al., 2019a) to determine
the importance of weights.

• FORCE (foresight connection sensitivity):
− ∂ℓ

∂θ ⊙θ, introduced in (de Jorge et al., 2021).

• Taylor-FO (Taylor first-order expansion):(
∂ℓ
∂θ ⊙ θ

)2
, derived from the 1st-order Tay-

lor expansion of the loss (Molchanov et al.,
2019).

• SynFlow (iterative synaptic flow pruning):
∂
∂θ

[
1⊤

(
ΠL

l=1|θ(l)|
)
1
]
⊙θ, where θ(l) denotes

the weights of the lth layer, and L denotes the
number of layers. A data-free metric proposed
in (Tanaka et al., 2020) to model synaptic flow.

In addition, the 2nd-order salience metrics are
computed as follows, where H ≜ ∂2L(fθ(x);y)

∂θ∂θ⊤ de-
notes the Hessian matrix:

• GRaSP (gradient signal preservation):
−
(
H ∂ℓ

∂θ

)
⊙ θ, which is a 2nd-order metric

proposed in (Wang et al., 2020) that aims to
preserve gradient signals rather than the loss
value.

• Fisher information:
(
∂ℓ
∂θ

)2
, which uses the

Fisher information to determine the impor-
tance of weights (Sung et al., 2021; Das et al.,
2023).

3.3 Sparsity Masking
Global Sparsity Masking Given a salience metric
S(θ) of the weight θ defined in Section 3.2, we
can construct the sparse binary mask τ by selecting
the top ρ ∈ (0, 1] fraction of the salience metric
values, i.e., ρ denotes the density level, namely:

τ = 1
[
s ≥ topρ(s)

]
,where s = S(θ). (2)

Here 1 is the indicator function, and topρ selects
the top ρ values.

Local Sparsity Masking Instead of ranking the
salience metric values across all weight values,
alternatively, we can construct layer-wise masks
τ (l) for the individual weights θ(l) in each layer l,
where each layer has a shared sparsity ρ, and the
top ρ values are selected from the salience metric
values of the weights in that layer:

τ (l) = 1
[
s(l) ≥ topρ(s

(l))
]
,where s(l) = S(θ(l)).

(3)
Here, θ is decomposed into layer-wise weights[
θ(1), . . . ,θ(L)

]
and τ (l) and θ(l) respectively de-

notes the mask and weights of the lth layer.

3.4 Static vs. Dynamic Masks
Beyond generating a static mask using the above
approach prior to fine-tuning, which remains fixed
throughout the training process, we can also ex-
plore the use of dynamic masks, which are updated
periodically during training. The dynamic mask
can be refreshed at specific intervals by the follow-
ing procedure: first, we apply the current trained
weights to the model; we then re-rank the salience
metric values with these weights, the top ρ values
are then selected to form a new mask using the
updated salience metric values; subsequently, the
fine-tuning process continues with the new mask.
Notably, after updating the dynamic masks, we also
need to reinitialize memory-based optimizers in or-
der to avoid applying incorrect momentum values
to the newly adapted sparse weights.

3.5 The SPEFT Algorithm
Algorithm 1 provides an overview of the proposed
SPEFT algorithm to fine-tune models with sparse
weight adaptations. The algorithm takes as input a
pretrained model fθ0 , an optimizer Opt, a training
dataset Dtrain, a batch size B, a loss function L, a
salience metric S, a sparsity level ρ, the number
of fine-tuning steps T , the learning rate α, and the
mask update interval I . The algorithm begins by

Algorithm 1 Sparse Parameter-Efficient Fine-Tuning (SPEFT)

Require: Pretrained model fθ0 , training dataset Dtrain, batch size B, loss function L, salience metric S,
sparsity level ρ, fine-tuning steps T , fine-tuning learning rate α, mask update interval I

1: θsp ← 0;θ ← θ0 ▷ Initialize weights
2: for t = 1 to T do ▷ For each fine-tuning step. . .
3: if t = 1 ∨ (I ≥ 0 ∧ (t mod I = 0)) then ▷ If salience masks should update. . . (Section 3.4)
4: (θ,θsp)← (θ + θsp,0) ▷ Apply sparse weights to model
5: s← S(θ) ▷ Compute salience values for all weights (Section 3.2)
6: τ ← 1

[
s ≥ topρ(s)

]
▷ Update mask by top-ρ values (Section 3.3)

7: end if
8: (x[1:B], y[1:B])← minibatch(Dtrain) ▷ Sample mini-batch
9: ℓ← 1

B

∑B
b=1 L(fθ+θsp(xb); yb) ▷ Forward pass

10: θsp ← Opt
(
α,θsp, τ ⊙ ∂ℓ

∂θsp

)
▷ Parameter-efficient optimization of sparse weights

11: end for ▷ NOTE: only need to compute non-zero entries of τ for the gradient
12: return θ + θsp ▷ Return fine-tuned model

initializing the sparse weights θsp to zero (line 1),
and then iterates for T steps (line 2). In each iter-
ation, the algorithm first checks if it is the initial
iteration, which requires updating the mask, or if it
is at the correct interval for iterative dynamic mask
updates (line 3). If either of these conditions is true,
the algorithm applies the current sparse weights to
the model (line 4), evaluates the new salience val-
ues s (line 5), and updates the salience mask τ for
the updated weights, on the sparsity level ρ (line 6).
After updating the mask, the training step follows
by sampling a mini-batch {x, y} from the training
dataset (line 8), and learns the sparse weights θsp
(line 9) using the optimizer Opt (e.g., stochastic
gradient descent, Adam, etc.). Here, τ ⊙ α ∂ℓ

∂θsp
where ⊙ denotes element-wise multiplication. In
terms of actual implementation, only the non-zero
entries in ∂ℓ

∂θsp
dictated by the mask τ are com-

puted and updated. Finally, the algorithm returns
the fine-tuned model θ0 + θsp.

4 Experimental Results

Models We evaluated our approaches and base-
lines over a set of models, including fine-tuned
OPT variants (-125m, -350m, and -1.3b) (Zhang
et al., 2022), BERT-base-uncased (Devlin et al.,
2019) and RoBERTa-base (Liu et al., 2019), for the
GLUE (Wang et al., 2019) benchmark, and fine-
tuned Gemma2-2b (Team et al., 2024) and Qwen2-
7b (Yang et al., 2024), to evaluate on the Mas-
sive Multitask Language Understanding (MMLU)
benchmark (Hendrycks et al., 2021) and GSM8K
(Cobbe et al., 2021), a dataset of grade school math
problems. Moreover, we fine-tuned Llama3-8b

(Grattafiori et al., 2024) to evaluate on the Hu-
manEval (Chen et al., 2021) and MBPP (Austin
et al., 2021) benchmarks. In addition to sparse
PEFT methods presented in this paper, we further
include LoRA (Hu et al., 2021) and PiSSA (Meng
et al., 2024) as low-rank adapter baselines for com-
parison.

Benchmarks To show the generality of our ap-
proach, we chose GLUE, MMLU, GSM8K, Hu-
manEval and MBPP as benchmarks for evalua-
tion. For the GLUE (Wang et al., 2019) bench-
mark, six representative tasks with large sizes
are selected: single-sentence task SST-2, infer-
ence tasks QNLI, MNLI, similarity and paraphrase
tasks MRPC, STS-B and QQP2. For the MMLU
(Hendrycks et al., 2021) benchmark, it contains
questions covering 57 subjects across STEM, the
humanities, the social sciences, and others. It is
designed to test the model’s ability to handle vari-
ous types of language data and complex problems.
We fine-tuned Gemma-2-2b, Qwen2-7b on either
the Alpaca (Taori et al., 2023) or OASST2 (Köpf
et al., 2023) conversational datasets, and then eval-
uated them on all tasks in MMLU. We fine-tuned
Gemma2-2b on the MetaMathQA (Yu et al., 2024)
dataset and evaluated on GSM8K (5-shots) to as-
sess the models’ multi-step mathematical reasoning
ability. Furthermore, we fine-tuned Llama3-8b on
the CodeFeedback (Zheng et al., 2024), to evaluate
on the HumanEval and MBPP which are aimed to
test the code generation ability of models. In the

2We did not evaluate CoLA and RTE because these datasets
are too small and require special treatments such as fine-tuning
RTE using an MNLI checkpoint (Lan et al., 2019).

results, we reported the match accuracy for MNLI,
Pearson correlation for STS-B, flexible extract and
strict match scores for GSM8K, Pass@1 for Hu-
manEval and MBPP, and accuracy values for other
tasks.

Baselines We chose LoRA (Hu et al., 2021) and
PiSSA (Meng et al., 2024) as the competing low-
rank baselines across models and benchmarks. By
default in all comparisons, SPEFT methods use
global sparsity ranking with static masks. For sta-
tistical significance, we repeated each experiment 3
times for OPT-{125m,350m}, BERT-base-uncased,
and RoBERTa-base, and reported average metrics
and their standard deviations.

Ablation Analyses We used the most reliable
salience metric, i.e., gradient-based, in further ex-
periments to explore questions related to dynamic
vs. static masks, and global vs. local sparsity in
Section 4.3. Additionally, we also explored the
efficiency-performance trade-off between LoRA,
PiSSA and sparse baselines in Section C.

Hyperparameters Our SPEFT methods intro-
duce a hyperparameter ρ, the percentage of train-
able parameters. To ensure a fair comparison, we
fixed ρ of our SPEFT methods to use the same
amounts of trainable parameters as LoRA and
PiSSA on every model, and kept the remaining
hyperparameters always the same. For example,
for the RoBERTa-base model, we performed a grid
sweep over learning rates from 5×10−4 to 5×10−5

to search for the best. Details about the hyperpa-
rameter settings can be found in Section A.

4.1 Main Results

Our experiments results on OPT-350m and BERT-
base-uncased can be seen in Table 1. For additional
results on RoBERTa-base, OPT-125m and OPT-
1.3b, please refer to Tables 9 to 11 in Section B.
Across all models, we observed that among all the
approaches, gradient-based SPEFT has the best av-
erage accuracy, higher than LoRA and PiSSA. For
instance, in OPT-125m and OPT-350m, gradient-
based SPEFT achieves 86.92% and 88.45%, that
are higher than the best competing SPEFT meth-
ods by 0.73% and 0.85% respectively. Particularly
on OPT-350m, gradient-based SPEFT has the best
performance on MNLI, MRPC, SST-2, and STS-
B, On QNLI and QQP, LoRA has the best perfor-
mance while gradient-based SPEFT has a good
performance close to it. This shows that although

LoRA shows excellent performance on certain
tasks, SPEFT methods, particularly with the gra-
dient salience metric, could further push the limit,
achieving better results in accuracy. On BERT-
base-uncased, we found that while SPEFT with
Fisher-Info salience metric outperforms gradient-
based SPEFT on QNLI, QQP and SST-2, it has a
large gap in performance in the remaining tasks,
making gradient-based SPEFT a more reliable and
desirable choice. Similar results are also observed
for other OPT variants in Tables 10 and 11 and
RoBERTa-base in Table 9 of Section B.

Notably, for both causal and masked lan-
guage models, sparsity-based PEFT can outper-
form low-rank adapters, and the gradient-based
SPEFT shows the strongest performance com-
pared to other methods, closely followed by LoRA
and PiSSA, which is consistent across all mod-
els. In addition, the gradient-based SPEFT outper-
formed LoRA and PiSSA in several tasks, high-
lighting its effectiveness across different model
sizes. The comprehensive results table for these
models and tasks underlines the consistent perfor-
mance edge of gradient-based SPEFT, making it a
reliable choice for a wide range of NLP tasks.

4.2 Larger Scale Models

For larger models, we evaluated all methods on
Gemma2-2b and Qwen2-7b, and show the results
in Table 2. The results indicate that larger models
can also benefit from SPEFT with the gradient-
based saliency method, which outperforms other
sparse training methods and LoRA.

To evaluate on the text generation task, We fine-
tuned Gemma2-2b with our methods on Meta-
MathQA and evaluated on 5-shot GSM8K. We also
provide the results of the pretrained model (without
fine-tuning) and LoRA as baselines. The results
are shown in Table 3. It can be seen that the sparse
adapters outperformed the LoRA baseline, with
the gradient-based SPEFT method leading the pack
with the best performance. Furthermore, for code
generation tasks, we fine-tuned Llama3-8b with our
methods and evaluated on HumanEval and MBPP
benchmarks. The results are shown in Table 12 of
Section B. Notably, the lead by sparse adapters
widens as the task complexity increases, which
demands token sequence generation with multi-
step reasoning.

Method MNLI MRPC QNLI QQP SST-2 STS-B Avg. #

OPT-350m (Trainable = 0.35%)

LoRA 83.56±.07 84.56±.49 89.69±.11 89.66±.04 93.87±.06 88.57±.99 88.32±.29 2
PiSSA 83.45±.06 83.09±.52 89.38±.06 89.66±.02 93.58±.09 88.39±.52 87.93±.21 1

Magnitude 79.34±.41 71.57±.13 86.45±.06 87.68±.01 91.98±.12 45.04±3.39 77.01±.51 0
Gradient 83.86±.06 84.80±.55 89.68±.01 89.51±.01 93.93±.12 88.95±.25 88.45±.02 3
SynFlow 77.45±.05 77.94±.49 83.19±.03 88.03±.02 92.32±.18 79.18±.63 83.02±.22 0
SNIP 83.40±.05 83.09±.37 89.68±.22 89.37±.02 93.75±.06 86.32±.04 87.60±.10 0
FORCE 83.25±.08 82.60±.62 89.75±.30 89.50±.03 94.04±.69 85.53±.18 87.44±.26 0
Taylor-FO 83.31±.08 83.09±.37 89.68±.22 89.37±.02 93.75±.06 86.32±.04 87.59±.12 0

GRaSP 74.78±.27 83.58±.49 84.46±.39 89.38±.03 94.04±.01 86.97±.01 85.54±.20 1
Fisher-Info 35.45±1.35 84.31±.61 88.12±.34 86.34±.41 87.16±.35 88.61±.02 78.33±.51 0

BERT-base-uncased (Trainable = 0.27%)

LoRA 81.45±.41 88.48±1.03 89.57±.35 87.77±.54 91.82±.14 84.07±1.11 87.19±.30 1
PiSSA 81.08±.27 87.75±.43 90.19±.30 88.14±.33 91.51±.08 85.12±.26 87.30±.18 1

Magnitude 77.09±.24 68.88±.25 86.60±.07 85.56±.50 90.14±.02 37.59±1.93 74.31±.33 0
Gradient 80.99±.12 89.46±.48 89.90±.26 87.48±.13 91.63±.01 85.08±.06 87.42±.15 2
SynFlow 70.85±.21 71.33±.25 83.49±.04 83.69±.16 90.08±.29 74.55±.36 79.00±.12 0
SNIP 80.74±.20 79.90±1.47 89.39±.08 87.27±.25 91.57±.06 80.92±.41 84.96±.18 0
FORCE 80.25±.09 78.31±.86 88.98±.15 87.04±.38 91.57±.17 79.21±.24 84.23±.15 0
Taylor-FO 80.74±.20 79.90±1.47 89.39±.08 87.27±.25 91.57±.06 80.87±.46 84.96±.18 0

GRaSP 79.37±.27 77.95±1.72 87.50±1.12 87.03±.41 91.35±.52 79.67±1.43 83.81±.59 0
Fisher-Info 79.83±.16 87.75±.74 90.46±.22 88.78±.25 91.86±.34 82.79±.63 86.91±.18 3

Table 1: Comparing the salience metrics on OPT-350m (with 0.35% trainable parameters) and BERT-base-uncased
(with 0.27% trainable parameters) for various GLUE tasks. For reference, we provide the LoRA and PiSSA
baselines with the same number of trainable parameters for each model. The “#” column denotes the number of best
performing tasks for each method. The best result of each column is highlighted in bold. “Avg.” reports the average
score across all tasks, and their average standard deviations.

4.3 Exploration of masking strategies

Based on the comparisons with SPEFT in Sec-
tion 4.1, which showed that gradient-based SPEFT
is the best-performing method, we would use it for
ablation studies of dynamic vs. static masks, and
global vs. local sparsity. In this section, we delve
into the comparisons between global and local
sparsity (Section 3.3) and also static and dynamic
masking strategies (Section 3.4) using gradient-
based SPEFT, the best-performing salience met-
ric, across OPT-125m, OPT-350m, and BERT-base-
uncased. Here, we periodically update the masks
every I = 1000 steps with 1024 training examples
to estimate the salience metrics. The results are
shown in Table 4.

Dynamic vs. static masking The findings reveal
that dynamic masking offers only a slight perfor-

mance advantage in smaller models like BERT-
base-uncased but does not significantly outperform
static masking in larger models. For instance, on
OPT-350m, we actually see static masking provides
us a better averaged accuracy (88.46 and 88.71)
compared to dynamic masking (86.14 and 81.76).
Given that dynamic masking requires more compu-
tational resources, because of the periodic update
on sparsity masks, the marginal performance gain
does not justify the extra cost, especially for larger
models. Therefore, static masking emerges as a
more practical and resource-efficient strategy, pro-
viding substantial performance benefits without the
additional computational overhead.

Global vs. local sparsity With global sparsity,
SPEFT calculates the metrics across all transformer
layers, ranks them collectively, and makes only

Model Gemma2-2b Qwen2-7b Avg.Dataset Alpaca OASST2 Alpaca OASST2

LoRA 53.07 52.59 69.77 70.42 61.46

Gradient 53.11 53.11 70.96 70.55 61.93
SynFlow 52.84 53.07 69.80 70.66 61.59
Magnitude 52.97 53.03 70.12 70.76 61.72
SNIP 52.81 52.89 68.75 70.52 61.24
FORCE 52.79 52.88 69.01 70.53 61.30
Taylor-FO 52.81 52.96 68.75 69.10 60.91

GRaSP 52.38 52.60 66.69 69.91 60.40
Fisher-Info 52.70 52.65 66.45 69.10 60.23

Table 2: Comparing the salience metrics on Gemma2-
2b and Qwen2-7b respectively with 0.97% and 0.53%
trainable parameters. We fine-tuned models on either
Alpaca or OASST2 and evaluated on 5-shot MMLU. For
reference, we provide the LoRA baselines with the same
number of trainable parameters for each combination.

Method Flexible Extract Strict Match Avg.

Pretrained 24.56 17.66 21.11
LoRA 39.20 28.81 34.00

Gradient 50.27 37.15 43.71
SynFlow 37.76 27.75 32.75
Magnitude 37.45 27.07 32.26
SNIP 39.80 29.64 34.72
FORCE 39.88 29.95 34.91
Taylor-FO 40.33 30.25 35.29

GRaSP 50.15 37.03 43.59
Fisher-Info 41.47 30.25 35.86

Table 3: Comparing the salience metrics on Gemma2-
2b with 0.97% trainable parameters. We fine-tuned
the model on MetaMathQA and evaluated on 5-shot
GSM8K. For reference, we provide pretrained model
(without fine-tuning) and the LoRA baseline with the
same number of trainable parameters.

the highest-ranked ones trainable. In the local ap-
proach, metrics are sorted and ranked within each
individual layer. Our results showed no signifi-
cant difference in performance between the two
strategies. For instance, the results in BERT-base-
uncased suggests that global is superior, by show-
ing a better averaged accuracy across the six GLUE
tasks, but the numbers in OPT-350m suggest the
reverse under the static masking strategy.

4.4 Minimal Overhead for SPEFT

Computational overhead For all first-order
salience metrics, we use a few gradient evalua-
tions to compute the salience scores. Specifically,
only 64 steps with a batch size of 16 per estimation
are needed (1024 examples), which is negligible

MNLI MRPC QNLI QQP SST-2 STS-B Avg.

OPT-125m (Trainable = 0.35%)

SG 81.41 83.82 88.58 88.71 91.44 87.55 86.92
SL 81.41 81.86 88.94 88.76 91.40 87.38 86.63
DG 77.71 82.84 83.80 87.36 89.33 88.28 84.89
DL 69.26 73.53 80.56 84.82 86.35 87.15 80.28

OPT-350m (Trainable = 0.35%)

SG 83.86 84.80 89.68 89.51 93.93 88.95 88.46
SL 84.31 83.33 90.63 90.97 94.50 88.52 88.71
DG 78.03 85.29 89.22 84.24 91.51 88.54 86.14
DL 78.86 71.57 80.84 84.52 87.27 87.52 81.76

BERT-base-uncased (Trainable = 0.27%)

SG 80.99 89.46 89.90 87.48 91.63 85.08 87.42
SL 74.58 85.54 89.62 83.41 91.06 85.79 85.00
DG 83.17 89.46 90.32 90.27 92.20 84.20 88.27
DL 72.80 86.52 83.49 82.51 90.25 85.95 83.59

Table 4: Results of OPT-125m, OPT-350m and BERT-
base-uncased with fixed or dynamic gradient masks and
global or local sparsity on various GLUE tasks. The
dynamic strategy will update the gradient mask every
1000 train steps. “S / D”: static / dynamic masks, “G /
L”: global / local sparsity. Runs were repeated 3 times
and all results have a standard deviation of < 0.5%.

compared to the overall training cost. For exam-
ple, this represents only 0.26% and 0.97% of the
training time for one epoch on MNLI and QNLI,
respectively. For static masks, this computation
is performed once before training; for dynamic
masking, it is repeated once per I = 1000 steps.
Second-order metrics such as GRaSP and Fisher-
Info require 2× the number of gradient evaluations
of first-order metrics to compute the second-order
gradients. The magnitude metric requires no addi-
tional computation. Finally, we observed no statisti-
cally significant difference in training time between
the sparse methods and the LoRA baseline.

Memory overhead As we aligned the number of
trainable parameters across LoRA and the SPEFT
methods, the peak memory usage for both methods
are mostly identical, except that the SPEFT meth-
ods require a small amount of additional memory
overhead to store the indices in CSR format. In all
experiments, the overhead is less than 0.5% of the
peak memory usage.

5 Discussion

The Trend of Supporting Sparse Computation
as Hardware Intrinsics Numerous hardware
vendors have introduced specialized hardware fea-
tures with instruction set extensions tailored for
sparse matrix multiplication. Especially in recently
announced hardware devices. Mainstream devices

like NVIDIA’s A100 (Choquette et al., 2021), H100
(Choquette, 2023), and H200, as well as offerings
from other major vendors or emerging competi-
tors such as AMD’s MI300 (AMD) and Cerebras’
WSE2 (Selig, 2022), are embracing this trend. As
hardware support for sparse computation advances,
the utility of sparsity-based PEFT, or generally
sparse training, is poised to improve substantially.
This development will enable both current and fu-
ture strategies to attain performance levels closer
to their full potential, as these calculations won’t
require emulation via dense computations, allow-
ing for closer realization of theoretical speedups
and savings on FLOPs.

The Role of Salience Measurements A funda-
mental element of this study involves reevaluat-
ing certain design choices in SPEFT, leading to
the discovery that straightforward designs, such
as first-order salience proxies, emerge as the most
effective methods. Intriguingly, selecting the most
salient weights in a neural network has being a
long-standing challenge, one that dates back to
early weight pruning research by LeCun et al. in
1989 (LeCun et al., 1989). It’s notable that the op-
timal saliency metric seems to differ – or arguably
should differ – among different task setups, such as
post-training weight pruning (LeCun et al., 1989),
pruning at initialization (Lee et al., 2019b; de Jorge
et al., 2021), and zero-cost NAS proxies (Siems
et al., 2020). The suggested practice then should
be to systematically review a range of known and
established proxies to set a solid baseline before
designing a complex salience metric.

6 Conclusion

We explored the efficacy of various sparse
parameter-efficient fine-tuning (SPEFT) methods
in enhancing the performance of LLMs. Our ex-
periments compared LoRA and PiSSA against
SPEFT methods with a range salience metrics, and
demonstrated that gradient-based SPEFT consis-
tently achieved superior accuracy across different
tasks and model architectures. This demonstrates
that, although LoRA and PiSSA is effective in cer-
tain contexts, SPEFT methods that leverage gradi-
ent information can further optimize performance.
We also investigated the impact of static versus
dynamic sparsity masks, concluding that while dy-
namic masks do not significantly outperform static
masks, and they introduce additional training over-
head. Our findings suggest that static masks, com-

bined with the gradient-based salience metric, pro-
vide a practical balance between computational
efficiency and model accuracy. Overall, our re-
search contributes to the ongoing efforts in making
model fine-tuning more efficient and accessible,
particularly in resource-constrained settings.

7 Acknowledgments

This work is supported in part by the National
Key R&D Program of China (2023YFC3321600),
National Natural Science Foundation of
China (62376263, 62372443 and 62271496),
Guangdong Basic and Applied Basic Re-
search Foundation (2023B1515130002),
Natural Science Foundation of Guangdong
(2024A1515030209 and 2024A1515011970),
Shenzhen Science and Technology Innovation
Commission (JCYJ20230807140507015 and
JCYJ20220531100804009), and Yu-Liang Lu’s
Project Team Development Funding (KY23A102).

8 Limitations

During the experiments, we found that in a few
training runs, SPEFT seems less sensitive to hy-
perparameter changes than LoRA, i.e., on a range
of hyperparameter sets, SPEFT always improves
model performance, but LoRA fails. Due to lim-
ited resources and time, we did not run additional
experiments to explore this interesting observation.
We leave this exploration for future work. More-
over, similar investigations on parameter efficient
fine-tuning could be conducted with non-language-
based models or other multimodal models, such as
vision large language models (VLLMs), however,
these explorations are beyond the current scope of
this paper and thus is left as future work.

References
AMD Instinct MI300 Series Accelera-

tors. https://www.amd.com/en/products/
accelerators/instinct/mi300.html. Accessed:
2024-03-03.

Alan Ansell, Edoardo Maria Ponti, Anna Korhonen,
and Ivan Vulić. 2021. Composable sparse fine-
tuning for cross-lingual transfer. arXiv preprint
arXiv:2110.07560.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

https://www.amd.com/en/products/accelerators/instinct/mi300.html
https://www.amd.com/en/products/accelerators/instinct/mi300.html

Yoshua Bengio, Nicholas Léonard, and Aaron Courville.
2013. Estimating or propagating gradients through
stochastic neurons for conditional computation.
arXiv preprint arXiv:1308.3432.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Jack Choquette. 2023. NVIDIA Hopper H100 GPU:
Scaling Performance. IEEE Micro, (3):9–17.

Jack Choquette, Wishwesh Gandhi, Olivier Giroux,
Nick Stam, and Ronny Krashinsky. 2021. NVIDIA
A100 tensor core GPU: Performance and innovation.
IEEE Micro, (2):29–35.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. Preprint, arXiv:2110.14168.

Sarkar Snigdha Sarathi Das, Ranran Haoran Zhang,
Peng Shi, Wenpeng Yin, and Rui Zhang. 2023.
Unified low-resource sequence labeling by sample-
aware dynamic sparse finetuning. arXiv preprint
arXiv:2311.03748.

Pau de Jorge, Amartya Sanyal, Harkirat Behl, Philip
Torr, Grégory Rogez, and Puneet K. Dokania. 2021.
Progressive skeletonization: Trimming more fat from
a network at initialization. In International Confer-
ence on Learning Representations.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. Preprint, arXiv:1810.04805.

William B. Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP2005).

Jonathan Frankle and Michael Carbin. 2019. The lottery
ticket hypothesis: Finding sparse, trainable neural
networks.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, et al. 2024. The llama 3 herd of mod-
els. arXiv preprint arXiv:2407.21783.

Demi Guo, Alexander M Rush, and Yoon Kim. 2020.
Parameter-efficient transfer learning with diff prun-
ing. arXiv preprint arXiv:2012.07463.

Song Han, Huizi Mao, and William J Dally. 2015. Deep
compression: Compressing deep neural networks
with pruning, trained quantization and huffman cod-
ing. arXiv preprint arXiv:1510.00149.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021. Measuring massive multitask language under-
standing. Preprint, arXiv:2009.03300.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran
El-Yaniv, and Yoshua Bengio. 2016. Binarized neu-
ral networks. Advances in neural information pro-
cessing systems, 29.

Andreas Köpf, Yannic Kilcher, Dimitri von Rütte,
Sotiris Anagnostidis, Zhi-Rui Tam, Keith Stevens,
Abdullah Barhoum, Nguyen Minh Duc, Oliver
Stanley, Richárd Nagyfi, Shahul ES, Sameer Suri,
David Glushkov, Arnav Dantuluri, Andrew Maguire,
Christoph Schuhmann, Huu Nguyen, and Alexander
Mattick. 2023. Openassistant conversations – democ-
ratizing large language model alignment. Preprint,
arXiv:2304.07327.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learn-
ing of language representations. arXiv preprint
arXiv:1909.11942.

Yann LeCun, John Denker, and Sara Solla. 1989. Opti-
mal brain damage. Advances in neural information
processing systems, 2.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip
Torr. 2019a. SNIP: Single-shot network pruning
based on connection sensitivity. In International
Conference on Learning Representations.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip
H. S. Torr. 2019b. Snip: Single-shot network
pruning based on connection sensitivity. Preprint,
arXiv:1810.02340.

Liyang Liu, Shilong Zhang, Zhanghui Kuang, Aojun
Zhou, Jing-Hao Xue, Xinjiang Wang, Yimin Chen,
Wenming Yang, Qingmin Liao, and Wayne Zhang.
2021. Group fisher pruning for practical network
compression. In International Conference on Ma-
chine Learning, pages 7021–7032. PMLR.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. Preprint, arXiv:1907.11692.

https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://openreview.net/forum?id=9GsFOUyUPi
https://openreview.net/forum?id=9GsFOUyUPi
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://aclanthology.org/I05-5002/
https://aclanthology.org/I05-5002/
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2304.07327
https://arxiv.org/abs/2304.07327
https://openreview.net/forum?id=B1VZqjAcYX
https://openreview.net/forum?id=B1VZqjAcYX
https://arxiv.org/abs/1810.02340
https://arxiv.org/abs/1810.02340
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692

Alexandra Sasha Luccioni, Sylvain Viguier, and Anne-
Laure Ligozat. 2023. Estimating the carbon footprint
of bloom, a 176b parameter language model. Journal
of Machine Learning Research, 24(253):1–15.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. 2024.
Pissa: Principal singular values and singular vec-
tors adaptation of large language models. Preprint,
arXiv:2404.02948.

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri
Frosio, and Jan Kautz. 2019. Importance estima-
tion for neural network pruning. In Proceedings of
the IEEE/CVF conference on computer vision and
pattern recognition, pages 11264–11272.

Justin Selig. 2022. The cerebras software development
kit: A technical overview. Technical Report, Cere-
bras.

Julien Siems, Lucas Zimmer, Arber Zela, Jovita
Lukasik, Margret Keuper, and Frank Hutter. 2020.
Nas-bench-301 and the case for surrogate bench-
marks for neural architecture search. arXiv preprint
arXiv:2008.09777, 4:14.

Tianxiang Sun, Yunfan Shao, Xiaonan Li, Pengfei Liu,
Hang Yan, Xipeng Qiu, and Xuanjing Huang. 2020.
Learning sparse sharing architectures for multiple
tasks. In Proceedings of the AAAI conference on
artificial intelligence, volume 34, pages 8936–8943.

Yi-Lin Sung, Varun Nair, and Colin A Raffel. 2021.
Training neural networks with fixed sparse masks.
Advances in Neural Information Processing Systems,
34:24193–24205.

Hidenori Tanaka, Daniel Kunin, Daniel L. K. Yamins,
and Surya Ganguli. 2020. Pruning neural networks
without any data by iteratively conserving synaptic
flow. In International Conference on Learning Rep-
resentations.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Gemma Team, Morgane Riviere, Shreya Pathak,
Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupati-
raju, Léonard Hussenot, Thomas Mesnard, Bobak
Shahriari, Alexandre Ramé, et al. 2024. Gemma 2:
Improving open language models at a practical size.
arXiv preprint arXiv:2408.00118.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
Glue: A multi-task benchmark and analysis plat-
form for natural language understanding. Preprint,
arXiv:1804.07461.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. 2020.
Picking winning tickets before training by preserv-
ing gradient flow. In International Conference on
Learning Representations.

Jiahui Xu, Lu Sun, and Dengji Zhao. 2024. MoME:
Mixture-of-masked-experts for efficient multi-task
recommendation. In SIGIR, pages 2527–2531.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, et al. 2024. Qwen2
technical report. arXiv preprint arXiv:2407.10671.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,
Zhengying Liu, Yu Zhang, James T. Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. 2024.
Metamath: Bootstrap your own mathematical
questions for large language models. Preprint,
arXiv:2309.12284.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu,
Bill Yuchen Lin, Jie Fu, Wenhu Chen, and Xiang
Yue. 2024. Opencodeinterpreter: Integrating code
generation with execution and refinement. arXiv
preprint arXiv:2402.14658.

https://arxiv.org/abs/2404.02948
https://arxiv.org/abs/2404.02948
https://openreview.net/forum?id=HJgKShEtvS
https://openreview.net/forum?id=HJgKShEtvS
https://openreview.net/forum?id=HJgKShEtvS
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/1804.07461
https://arxiv.org/abs/1804.07461
https://openreview.net/forum?id=SkgsACVKPH
https://openreview.net/forum?id=SkgsACVKPH
https://doi.org/10.1145/3626772.3657922
https://doi.org/10.1145/3626772.3657922
https://doi.org/10.1145/3626772.3657922
https://arxiv.org/abs/2309.12284
https://arxiv.org/abs/2309.12284

A Hyperparameters

The hyperparameters we used for all models are
shown in Tables 5 to 8. Notably, for all models,
the density ρ was set to make sure the number of
trainable parameters across all methods was the
same as the LoRA baseline.

Method Dataset
MRPC
STS-B

QNLI
SST-2
MNLI
QQP

Shared

Optimizer AdamW AdamW
Warmup Ratio 0 0
LR Schedule Linear Linear
Batch Size 16 64
Epochs 30 30
Learning Rate 4E-4 5E-5
Max Seq. Len. 512 196

LoRA
LoRA r 8 8
LoRA α 16 8

OPT-125m Sparse ρ 0.35% 0.35%
OPT-350m Sparse ρ 0.35% 0.35%
BERT-base Sparse ρ 0.27% 0.27%
RoBERTa-base Sparse ρ 0.24% 0.24%

Model
(Method)

Hyperparameters All datasets

Shared

Optimizer AdamW
Warmup Ratio 0
LR Schedule Linear
Learning Rate 5E-5
Epochs 30
Batch Size 16

OPT-1.3b LoRA r 8
(LoRA) LoRA α 8

OPT-1.3b
(Sparse)

Sparse ρ 0.18%

Table 5: The hyperparameters we used for all models
evaluated on the GLUE benchmark. The percentage
of trainable parameters (ρ) for the sparse models are
chosen to be the same as the LoRA models.

B Additional Experimental Results

Tables 9 to 11 provide additional respective results
on GLUE tasks for the OPT-125m and OPT-1.3b
variants, and BERT-base-uncased. Table 12 shows
the results on HumanEval and MBPP benchmarks
for Llama3-8b model.

C Additional Ablation Studies

We fine-tuned the Gemma2-2b model on the
MetaMathQA dataset and evaluated it on the
GSM8K_cot task (5-shot) using flexible extract

Model
(Method)

Hyperparameters Alpaca OASST2

Shared

Optimizer AdamW
Warmup Ratio 0.03
LR Schedule Constant
Batch Size 16
Max Seq. Len. 1024

Gemma2-2b
(LoRA)

Steps 2000
Learning Rate 5E-5
LoRA r 64
LoRA α 16

Gemma2-2b
(Sparse)

Steps 2000
Learning Rate 1E-5 5E-6
Sparse ρ 0.97%

Qwen2-7b
(LoRA)

Epochs/Steps 3 Epochs 2000 Steps
Learning Rate 5E-5
LoRA r 64
LoRA α 16

Qwen2-7b
(Sparse)

Epochs/Steps 3 Epochs 2000 Steps
Learning Rate 5E-5 5E-6
Sparse ρ 0.53%

Table 6: The hyperparameters we used for Gemma2-2b
and Qwen2-7b on Alpaca and OASST2. The percentage
of trainable parameters (ρ) for the sparse models are
chosen to be the same as the LoRA models.

and strict match metrics. In order to explore the
efficiency-performance trade-off, we varied for
LoRA r from 4 to 128 and compare it against
SPEFT methods with the same trainable param-
eters for each config. The LoRA α was always
kept the same as r.

With the same numbers of training parameters,
LoRA and SPEFT would use almost identical
FLOPs per step, as the added overheads of both are
of the same magnitude and much smaller (<0.5%
in all of our main experiments) than the base model.
There was no noticeable difference between LoRA
and SPEFT in terms of computational and memory
footprint for all runs.

As is shown in Figure 2, the performance of
SPEFT methods improve with increasing trainable
parameters while LoRA results are mostly con-
stant with increased parameter budget. Overall, the
gradient-based SPEFT outperformed LoRA using
fewer trainable parameters, but also widens the gap
further as the budget increases.

D Computational Resources

We performed all experiments on a cluster of
NVIDIA A100 40GB GPUs. The experiments took
around 486 GPU-hours for a single model on all

GLUE subsets and all salient metrics. Besides,
it took around 40 GPU-hours for a single model
on Alpaca or OASST2 training on all low-rank
and sparse PEFT methods. It also took around 80
GPU-hours to train with all methods on MetaMath
for GSM8k evaluation. We also spent around 500
GPU-hours aligning the baseline results with the
literature and determining fine-tuning hyperparam-
eters.

LoRA
PiSSA

Magnitude
Gradient

SynFlow
SNIP

FORCE
Taylor-FO

Fisher-Info

0.06 0.12 0.24 0.49 0.98 1.95
Trainable Parameters (%)

25

30

35

40

45

50

55

A
cc

ur
ac

y
(%

)

(a) Flexible Extract.

0.06 0.12 0.24 0.49 0.98 1.95
Trainable Parameters (%)

15

20

25

30

35

40

A
cc

ur
ac

y
(%

)

(b) Strict Match.

Figure 2: Varing the number of trainable parameters
on Gemma2-2b and GSM8K_cot (5-shot) with LoRA,
PiSSA and SPEFT methods. The x-axis represents the
percentage of trainable parameters, while the y-axis
denotes accuracy.

Model
(Method)

Hyperparameters MetaMathQA

Optimizer AdamW
Shared Warmup Ratio 0.03

LR Schedule Linear

Gemma2-2b
(LoRA)

Batch Size 16
Epochs 1
Learning Rate 2E-5
LoRA r 64
LoRA α 16
Max Seq. Len. 1024

Gemma2-2b
(Sparse)

Batch Size 16
Epochs 1
Learning Rate 2E-5
Sparse Top k 0.18%
Max Seq. Len. 1024

Table 7: The hyperparameters we used for Gemma2-2b
on MetaMathQA. The percentage of trainable parame-
ters (ρ) for the sparse models are chosen to be the same
as the LoRA models.

Model
(Method)

Hyperparameters CodeFeedback

Optimizer AdamW
Shared Warmup Ratio 0.03

LR Schedule Linear

Llama3-8b
(LoRA)

Batch Size 16
Epochs 1
Learning Rate 2E-5
LoRA r 64
LoRA α 16
Max Seq. Len. 512

Llama3-8b
(Sparse)

Batch Size 16
Epochs 1
Learning Rate 2E-5
Sparse Top k 0.67%
Max Seq. Len. 512

Table 8: The hyperparameters we used for Llama3-8b on
CodeFeedback. The percentage of trainable parameters
(ρ) for the sparse models are chosen to be the same as
the LoRA models.

Method MNLI MRPC QNLI QQP SST-2 STS-B Avg. #

LoRA 86.52±.06 89.46±.73 92.11±.29 88.70±.15 93.81±.23 90.30±.01 90.15±.25 0
PiSSA 86.71±.02 89.47±.42 92.20±.09 88.46±.10 93.75±.14 90.78±.02 90.23±.13 3

Magnitude 82.58±.46 31.62±2.05 88.03±.35 86.37±.36 90.60±.23 15.16±2.64 65.73±1.01 0
Gradient 86.00±.05 90.44±.11 91.89±.13 88.78±.05 94.16±.06 90.29±.02 90.26±.04 2
SynFlow 75.53±.02 70.34±.12 84.37±.01 85.19±.02 91.80±.29 76.92±.44 80.69±.17 0
SNIP 85.97±.01 87.01±.25 91.34±.01 88.31±.06 93.92±.29 87.52±.16 89.01±.08 0
FORCE 85.64±.05 85.29±.37 91.31±.04 88.39±.04 93.75±.06 86.52±.15 88.48±.07 0
Taylor-FO 85.97±.01 87.01±.25 91.34±.01 88.31±.06 93.92±.29 87.52±.16 89.01±.08 0

GRaSP 79.07±.02 84.80±.25 87.88±.02 88.45±.12 93.52±.06 86.81±.24 86.76±.04 0
Fisher-Info 85.52±.15 86.76±.35 91.82±.06 89.16±.03 93.92±.28 87.51±.05 89.12±.15 1

Table 9: Comparing the salience metrics on RoBERTa-base for various GLUE tasks with 0.24% trainable parameters,
following the same format as Table 1.

Method MNLI MRPC QNLI QQP SST-2 STS-B Avg. #

LoRA 81.94±.22 82.84±.23 88.23±.30 88.45±.20 91.97±.18 87.25±.47 86.78±.21 2
PiSSA 81.56±.11 83.33±.30 87.99±.32 88.17±.15 91.97±.11 86.87±.39 86.65±.15 1

Magnitude 78.03±3.14 76.35±4.05 85.46±1.62 86.56±1.15 90.40±.85 50.32±2.42 77.85±3.27 0
Gradient 81.41±.01 83.82±.37 88.58±.37 88.71±.09 91.46±.05 87.55±.34 86.92±.05 3
SynFlow 81.05±.05 81.01±.37 87.92±.07 88.35±.04 91.21±.14 85.47±.75 85.83±.16 0
SNIP 81.21±.01 81.62±.74 88.31±.12 88.58±.04 91.32±.53 86.11±.40 86.19±.06 0
FORCE 81.31±.09 79.91±.74 88.31±.08 88.46±.04 91.44±.23 85.62±.48 85.84±.02 0
Taylor-FO 81.21±.01 81.62±.74 88.31±.12 88.58±.04 91.32±.53 86.11±.40 86.19±.06 0

GRaSP 81.36±.14 81.25±.61 88.11±.03 88.52±.12 91.40±.28 85.69±.35 86.05±.20 0
Fisher-Info 74.43±.15 80.39±.61 80.63±.64 86.81±.03 87.50±.91 87.59±.38 72.31±.45 1

Table 10: Comparing the salience metrics on OPT-125m with 0.35% trainable parameters on various GLUE tasks,
following the same format as Table 1.

Method MRPC QNLI SST-2 STS-B QQP Avg. #

LoRA 83.33 92.48 95.99 89.03 89.97 90.16 1

Magnitude 77.45 90.43 95.18 80.33 90.41 86.76 1
Gradient 87.25 92.11 95.53 90.30 89.02 90.84 2
SynFlow 78.68 90.85 96.10 81.66 88.56 87.17 1
SNIP 83.82 92.48 75.23 89.44 85.93 85.38 1
FORCE 83.58 92.39 89.56 88.83 88.31 88.53 0
Taylor-FO 83.82 92.48 75.23 89.44 85.93 85.38 1

GRaSP 84.80 92.46 87.96 89.54 88.09 88.57 0
Fisher-Info 81.37 90.74 83.26 84.86 85.27 85.10 0

Table 11: Comparing the salience metrics on OPT-1.3b
with 0.18% trainable parameters on a subset of the
GLUE benchmark, following the same format as Ta-
ble 1.

Method HumanEval MBPP Avg.

LoRA 40.85 48.8 44.83
PiSSA 38.41 48.0 43.21

Gradient 48.78 50.0 49.39
SynFlow 40.85 49.0 44.93
Magnitude 39.02 49.2 44.11
SNIP 46.95 51.0 48.98
FORCE 46.95 50.4 34.91
Taylor-FO 49.39 49.4 49.40

GRaSP 46.34 49.8 48.07
Fisher-Info 46.34 47.2 46.77

Table 12: Comparing the salience metrics on Llama3-
8b with 0.67% trainable parameters. We fine-tuned the
model on CodeFeedback and evaluated on HumanEval
and MBPP. For reference, we provide LoRA and PiSSA
as baselines with the same number of trainable parame-
ters.

	Introduction
	Related Work
	PEFT Methods
	Salience Proxies for Sparsity Masking

	Method
	Problem Formulation
	Salience Metrics
	Sparsity Masking
	Static vs. Dynamic Masks
	The SPEFT Algorithm

	Experimental Results
	Main Results
	Larger Scale Models
	Exploration of masking strategies
	Minimal Overhead for SPEFT

	Discussion
	Conclusion
	Acknowledgments
	Limitations
	Hyperparameters
	Additional Experimental Results
	Additional Ablation Studies
	Computational Resources

