
PASS: Exploiting Post-Activation Sparsity in
Streaming Architectures for CNN Acceleration

Alexander Montgomerie-Corcoran∗, Zhewen Yu∗, Jianyi Cheng and Christos-Savvas Bouganis
Imperial College London, UK

{alexander.montgomerie-corcoran15, zhewen.yu18, jianyi.cheng17, christos-savvas.bouganis}@imperial.ac.uk

Abstract—With the ever-growing popularity of Artificial Intel-
ligence, there is an increasing demand for more performant and
efficient underlying hardware. Convolutional Neural Networks
(CNN) are a workload of particular importance, which achieve
high accuracy in computer vision applications. Inside CNNs,
a significant number of the post-activation values are zero,
resulting in many redundant computations. Recent works have
explored this post-activation sparsity on instruction-based CNN
accelerators but not on streaming CNN accelerators, despite
the fact that streaming architectures are considered the leading
design methodology in terms of performance. In this paper, we
highlight the challenges associated with exploiting post-activation
sparsity for performance gains in streaming CNN accelerators,
and demonstrate our approach to address them. Using a set
of modern CNN benchmarks, our streaming sparse accelerators
achieve 1.41× to 1.93× efficiency (GOP/s/DSP) compared to state-
of-the-art instruction-based sparse accelerators.

I. INTRODUCTION

Despite the successes of Transformers [1], CNNs [2], [3] are
still the de-facto method for many vision tasks. The Rectified
Linear Unit (ReLU) activation operation is ubiquitous within
CNNs as it introduces non-linearities, increasing the network
capacity. ReLU operation clamps all negative values in the
feature maps to zero, leading to many redundant operations, a
property referred to as post-activation sparsity. As an alternative
to post-activation sparsity, weight sparsity can be induced
through the pruning of near-zero parameters [4]. However,
weight sparsity exploitation incurs an accuracy penalty, and
requires re-training to recover accuracy losses. On the contrary,
post-activation sparsity exploitation does not introduce approx-
imations in the computations, and offers a large potential for
performance gains.

Recent works have explored post-activation sparsity on
instruction-based CNN accelerators [5], [6], where the com-
putation of layers is time-multiplexed in hardware. As fea-
ture maps are repeatedly read to and from off-chip memory
during execution, they are encoded to reduce memory foot-
print. In terms of dense CNN accelerator designs, streaming
architectures are considered more efficient [7], as the layer-
wise hardware customisation and pipelining leads to a lower
memory footprint and higher throughput. However, of all the
prior streaming architecture works none have exploited post-
activation sparsity. Streaming architectures pose the following
challenges with regard to post-activation sparsity:

• Dynamic Scheduling: As the appearance of zeros is only
known at run-time, a dynamic scheduler [8], [9] is required

∗equal contribution

[11] [12] [13] [6] Ours Ours [11] [14] Ours [13] Ours

0.2

0.4

0.6

VGG16 ResNet-18 ResNet-50

1
.2
2
×

1
.3
0
×

1
.0
×

1
.3
7
×

2
.5
9
×

1
.9
3
×

1
.1
5
×

1
.0
×

1
.7
5
×

1
.0
×

0
.9
6
×

Pe
rf

or
m

an
ce

D
en

si
ty

ZC706 VC709 ZCU102

Fig. 1: Comparison of our work against existing dense and sparse
accelerators in terms of performance density (GOP/s/DSP). Details
can be found in Table III.

to skip zeros and dispatch the remaining non-zero elements
to computation units on-the-fly.

• Data Stream Synchronisation: Multiple data streams are
processed in parallel for high throughput. However, the
density and distribution of zeros across the feature maps
vary, leading to an imbalanced workload between data
streams which causes pipeline stalls. Load balancing and
buffering are required.

• Resource Allocation: The allocation of FPGA resources
to the various compute engines for a given performance
target is a non-convex problem. Existing algorithms [10]
provide solutions for the case of multiple dense computa-
tion engines, but sparse computation engines have not yet
been considered.

In this work, a toolflow that generates streaming architecture
is proposed which addresses the preceding research questions.
The major contributions of our work include:

• A scalable, dynamically scheduled architecture design
which can exploit post-activation sparsity.

• A compile-time workload balancing strategy and auto-
mated buffer sizing methodology to reduce pipeline stalls.

• A novel Design Space Exploration (DSE) method which
considers measured sparsity distribution for balancing the
rates of multiple sparse engines.

Over a set of CNN benchmarks, the results show that our
approach can achieve 1.52× to 1.85× performance density
compared to existing streaming dense architecture, and 1.41×
to 1.93× performance density compared to state-of-the-art
instruction-based sparse accelerators.

ar
X

iv
:2

30
7.

07
82

1v
1

 [
cs

.A
R

]
 1

5
Ju

l 2
02

3

TABLE I: Comparison between our work and related works. Our work
is the first to exploit post-activation sparsity on streaming architectures,
with a novel DSE method that considers sparsity statistics. We also
avoid the overhead of sparse encoding with dynamic scheduling.

Approach [14] [15] [16] [11] [6] [12] [13] Ours

Streaming ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓
Sparsity ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓

Encoding ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗
DSE ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓

II. RELATED WORKS

CNN Accelerators can generally be placed into two cate-
gories [7]: instruction-based architectures and streaming archi-
tectures. Instruction-based architectures [17], [18] use micro-
instructions to execute layers of the CNN model, typically with
a systolic array hardware design for computation. These archi-
tectures are able to generalise across multiple CNN models,
however, are limited by the inefficient processor-like control
mechanisms. Streaming architectures are characterised by their
deeply pipelined hardware, where every layer of the CNN
is mapped to a dedicated computation engine. FPGAConvNet
[11], FINN [19] and HLS4ML [20] are examples of toolflows
which automate the generation of streaming architecture de-
signs for a given target platform. This design method often
achieves high-performance designs, as the workload is tailored
to the available resources of the platform. However, these
existing tools do not exploit post-activation sparsity as they
are statically scheduled.

Sparse CNN accelerators have been explored in several
works, especially on weight sparsity [21], [22], as the deter-
ministic patterns of non-zero operations can be scheduled in
a static manner. However, when dealing with post-activation
sparsity, the presence of zeros is neither evenly distributed
nor compile-time known, which poses a unique challenge
for hardware designs. Existing research into exploiting post-
activation sparsity has focused on two directions: skipping zero
operations for energy savings, and using sparse representa-
tions for performance gains. For energy saving, zero-gating
unnecessary computation to leave the arithmetic circuitry idle
leads to greater energy efficiency [6], however, there are no
performance benefits. Works that do exploit post-activation
sparsity for performance gains require the data to be encoded in
a sparse representation [23], [24]. By using representations such
as Compressed Sparse Row (CSR) [23], non-zero operations
can be routed to arithmetic circuits in a fine-grained manner.
However, the overheads associated with sparse encoding are not
scalable, making this approach only suited to extremely sparse
workloads [25]. Furthermore, this approach has only been
explored with instruction-based architectures, whose underlying
hardware does not have the same performance benefits and
challenges as streaming architectures. This work is the first to
address the challenge of exploiting post-activation sparsity for
performance gains in streaming architectures whilst utilising the
original dense representation of the feature maps by designing a
novel matrix-vector hardware which is dynamically scheduled.

NZC NZC NZC NZC

Sparse CrossbarPSUM
Logic

MAC MACMAC

Adder Tree

0 0 0

Fig. 2: Diagram of the proposed Sparse Matrix-Vector Engine for
Kx,Ky = 2 and k = 3. The Non-Zero Check (NZC) hardware
generates a signal indicating if the feature map is non-zero.

III. ARCHITECTURE

In this section, the architecture of the proposed accelerator
is described. The hardware design follows a streaming archi-
tecture approach.

A. Sparse Matrix-Vector Engine

The key operation being performed in streaming architecture
accelerators is matrix-vector multiplication. In order to exploit
sparsity in matrix-vector multiplication for performance gains,
a novel Sparse Matrix-Vector Engine (S-MVE) is proposed.
A diagram of the proposed hardware is given in Fig. 2. The
hardware accepts streams of consecutive pairs of vectors from
the sliding window module and weights memory. Each pair of
feature map and weight elements is evaluated with a Non-Zero
Check (NZC) module, which indicates the presence of non-zero
inputs. The vector pairs are then fed into a Sparse Crossbar
module along with the NZC flags. This module squeezes the
Kx × Ky inputs to k outputs, and only routes the non-zero
values to the crossbar output. The crossbar output feeds the
non-zero values to k parallel MAC units, which perform the
non-zero products. The products are then accumulated through
an adder tree. Additional logic is required to handle extremely
dense inputs, where the accumulation takes multiple cycles.

0 20 40 60 80 100

2

4

6

8

Sparsity (%)

E
qu

iv
al

en
t

O
Ps

/C
yc

le # MAC
1
2
3
4
5
6
7
8
9

Fig. 3: Performance of the proposed Sparse Matrix-Vector Engine
against sparsity for a typical Kx,Ky = 3 kernel size, across all MAC
configurations. With the increasing sparsity, fewer MACs are required
to achieve the maximum performance.

The performance characteristics of the proposed S-MVE
are given in Fig. 3 for a typical Kx,Ky = 3 kernel size,
across all the different MAC configurations. It can be seen
that allocating more MACs to our engine leads to greater

performance, but with increasing sparsity, the performance
gain per MAC diminishes. For a sparsity level greater than
40%, our implementation is always more resource-efficient than
an equivalent dense implementation, achieving the maximum
performance with fewer MACs allocated. Therefore, our hard-
ware exposes a fine-grained trade-off between performance and
MAC resources at different sparsity levels.

1 2 3 4 5 6 7 8

400

600

800

MAC

R
es

ou
rc

e
U

sa
ge

LUT
FF

200

250

300

350

Fr
eq

ue
nc

y
(M

H
z)

Fig. 4: LUT and FF resource usage as well as achieved clock
frequency for a typical Kx,Ky = 3 kernel size, across all MAC
configurations, synthesised for a Zynq-Ultrascale+ FPGA architecture.
The design is able to maintain a frequency above 190MHz for all MAC
configurations.

Furthermore, the utilisation characteristics and achieved
clock frequency of the S-MVE hardware are explored in Fig. 4.
For the proposed S-MVE, all the configurations are able to
achieve a clock frequency above 190MHz, with up to 340MHz
for extremely sparse hardware. The frequency dips towards the
middle configuration, as this configuration contains the most
complex crossbar with regard to routing. There is a steady
increase in LUT and FF resources as the number of allocated
MACs increases, however this relationship plateaus around the
5-MAC configuration. The LUT overheads mainly come from
the sparse crossbar, and are not significant considering the
savings on MACs. For reference, the cost of implementing a
16-bit MAC is 305 LUTs for the given FPGA fabric.

B. Pipelined Convolutional Layer
Fig. 5 illustrates the pipelined design inside a single convo-

lutional layer as well as the integration of the S-MVE module.
The hardware components are as follows:

• Sliding Window, which generates windows of the feature
map from a single incoming stream by using line buffers.

• Sparse Matrix-Vector Engine takes as input the incoming
feature map windows and corresponding weights, and
performs the non-zero dot-products within the kernel di-
mensions of the convolution.

• Accumulator, which sums across the channel dimension.
• Bias Module, which adds a per-channel bias term.
Apart from the kernel parallelism within the S-MVE module

denoted by k, the convolutional layer hardware also exploits
input-channel and output-channel parallelism with the factors
denoted as NI and NO respectively in the Fig. 5. Overall,
there are NI ·NO S-MVE modules computing in parallel within
each convolutional layer. The communication between S-MVE
modules is asynchronous as the instantaneous sparsity can be
different across data streams, therefore synchronisation barriers
are required, as illustrated in the figure.

Sliding Window

Sparse Matrix-
Vector Engine

Accumulator

Sparse Matrix-
Vector Engine

Accumulator

Sliding Window

Sparse Matrix-
Vector Engine

Accumulator

Sparse Matrix-
Vector Engine

Accumulator

Bias

Bias O
ut

pu
t S

tr
ea

m
 In

te
rf

ac
e

In
pu

t S
tr

ea
m

 In
te

rf
ac

e NO

Synchronisation Barriers

NI

NO

NO

Fig. 5: A block diagram of a convolutional layer within a streaming
architecture design. The input channel parallelism (NI) and output
channel parallelism (NO) are highlighted. The synchronisation bound-
aries required are also shown.

TABLE II: Taxonomy of symbols used in this paper.

Symbols Definitions

B batch size of feature map
L total layers in the network
CI, CO number of channels into and out of the layer
HO,WO spatial dimensions of the output feature map
Kx,Ky height and width of convolution kernel
NI, NO input and output channel parallelism
k number of MACs inside each S-MVE, k ≤ KxKy

IV. DESIGN SPACE EXPLORATION

Elaborating on sparsity, it is the measure of the number of
zero values in a stream of observed data. In this paper, we use
sm to denote the instantaneous sparsity within the mth stream.
The average sparsity is the expected value of the sparsity
distribution (s̄m = E [sm]). All these statistics are measured
on a subset of ImageNet validation data.

In this section, the DSE problem of finding a maximal
throughput hardware design for a given CNN model and FPGA
pair is discussed. Our DSE method decides the allocation of
MACs based on the average sparsity (section IV-A), as well
as the insertion of buffers based on the variation of sparsity
(section IV-B). Table II gives the taxonomy of symbols used.

A. MAC Allocation

In our design, all the MAC units are implemented with the
DSP resources on the FPGA. As each convolutional layer is
mapped to NI · NO S-MVE, each containing k MAC units,
the per-layer DSP utilisation is modelled using the following
equation.

RDSP = NI ·NO · k (1)

In streaming architectures, the average throughput of the
whole system is dictated by the slowest layer. Therefore, the
allocation of DSP resources is guided by the performance mod-
elling of S-MVE. As each S-MVE is responsible for computing
the kernel dimensions of the convolution, the average number
of non-zero MAC operations required to produce one output is
(1− s̄m) ·Kx ·Ky.

As each S-VPE contains k MACs, its average throughput
can be expressed as,

θ̄m,n = min

(
1,

k

(1− s̄m) ·Kx ·Ky

)
(2)

The performance increases as sparsity increases up to the
maximum throughput of 1 element per cycle for each S-
VPE. This model drives the sparsity-resource trade-off, where
achieving maximum throughput does not necessarily require
Kx · Ky MACs, and the saved resources can be allocated to
other slower stages of the pipeline. The S-MVE performance
models can be used to construct the average latency, t̄i, of a
convolutional layer,

t̄i = HO ·WO ·
CI

NI
· CO

NO
·
(

max
m∈[1,NI],n∈[1,NO]

1

θ̄m,n

)
(3)

Given adequate buffering (as discussed in Section IV-B), the
latency of the layer is dictated by the slowest S-MVE. Finally,
the MACs allocation is expressed as the following optimisation
problem:

max min
i∈[1,L]

B

t̄i
, s.t.

∑
i

RDSP ≤ budget (4)

where L is the number of layers and B is the batch size. This
optimisation problem is solved using the simulated annealing
algorithm [10].

B. Buffer Depth Sizing

The above performance modelling in (2) and (3) assumes
zero variance in each stream, which underestimates the latency
given Jensen’s inequality that states t(E[θ]) ≤ E[t(θ)]. From
the hardware perspective, latency underestimation is caused
by back-pressure from the synchronisation barriers illustrated
in Fig. 5, where the observed instantaneous sparsity deviates
from its average value. It is therefore necessary to introduce
buffering that reduces the Jensen gap between estimated and
actual latency.

Buffers are placed at the input of S-MVEs, accounting for
variations in instantaneous sparsity between the S-MVE input
streams. In order to determine a suitable choice in buffer depth,
a statistical method based on the calculation of a moving
average of sparsity is proposed, which is given as,

ψw
m(j) =

1

w

j+w∑
i=j

sm(i) (5)

ψw
m is the time series for the moving average of stream m for

a window size of w, and sm is the time series of the sparsity
observed on stream m. The intuition is that as the buffer size
increases, the detrended average value of samples in the buffers
converge to the average sparsity level of the stream.

To measure the impact of buffer sizing, the back pressure
metric, ρw is proposed, which is defined as,

ρw = E
[
max
m

ψw
m −min

m
ψw
m

]
−
(
max
m

s̄m −min
m

s̄m

)
(6)

This metric gives the average maximum difference between
the moving average windows, reflecting the average number

0 64 128 192 256
0

1K

2K

Buffer Size (w)

L
U

T
R

A
M

U
sa

ge

0

5

10

15

20

L
at

en
cy

O
ve

rh
ea

d
(%

)

0

1

2

3

4

B
ac

k
Pr

es
su

re
M

et
ri

c
(ρ

w
)

Fig. 6: Comparison of the back-pressure metric and observed latency
overhead for different buffer sizes, for the 2nd layer of ResNet-18 with
a configuration of NI = 32 and k = 1. The cost of the buffer in terms
of LUTRAM is given for each buffer size.

of extra samples needed to balance the workload in that
period. The difference in average sparsity between the most and
least sparse streams is subtracted to normalise for unbalanced
streams. The greater ρw is, the slower the execution of the
hardware will be with respect to (3).

The effectiveness of the back pressure metric at identifying
the optimal buffer size is evaluated in Fig. 6. It can be seen
that the metric is strongly correlated with the latency overhead
observed. The buffer size is chosen based on a stopping
condition for ρw as well as a limit on LUTRAM.

V. EVALUATION

In this section, the performance and resource utilisation of
the proposed framework is evaluated. For hardware synthesis,
Vivado 2020.1 is used.

A. Dense vs Sparse Design Comparison

The performance benefits of sparsity on the proposed archi-
tecture are evaluated in this subsection. The proposed toolflow
is used to generate both dense designs using an existing Matrix-
Vector Engine [11], as well as designs with the proposed Sparse
Matrix-Vector Engine.

Fig. 7 illustrates the dense and sparse hardware performance
for a set of representative CNN workloads: AlexNet [26],
VGG11 & VGG16 [27], RepVGG-AO [3], MobilenetV2 [28]
and ResNet-18 & ResNet-50 [29]. The sparse engine exceeds
the performance of the dense engine for all CNN models. The
largest gain was observed for ResNet-18 (51%), whereas the
smallest was for MobileNetv2 (9%). For both MobileNetV2
and ResNet-50, the performance gains realised were marginal.
In the case of MobileNetV2, this is due to most of the work-
load being point-wise convolutions, as the proposed S-MVE
hardware is not able to exploit the sparsity of 1 × 1 kernels.
For ResNet-50, both dense and sparse designs are constrained
by the large on-chip memory requirements, bottlenecking their
achievable performance. Overall, the proposed toolflow is able
to exploit the post-activation sparsity leading to significant
performance gains.

The performance improvements for the sparse architecture
can be attributed to sparsity. For example, the average sparsity
across all the convolutional layers of VGG16 and ResNet-18 is

TABLE III: Comparison of the performance and resources of related works for CNN models running ImageNet. We use GOP/s/DSP to evaluate
the performance with a normalised hardware resource since other approaches use different FPGA devices. The best result in each comparison
is highlighted in bold and green. W. = weights, and P.-A. = post activation.

[11] [12] [13] [6] Ours Ours [11] [14] Ours [13] Ours

Network VGG16 ResNet-18 ResNet-50

Quantisation W16A16 W8A16 W16A16 W16A16 W16A16 W16A16 W16A16 W16A16 W16A16 W16A16 W16A16
Sparsity - - W. W., P.-A.* P.-A. P.-A. - - P.-A. W. P.-A.

Streaming Yes No No No Yes Yes Yes No Yes No Yes
Device ZC706 VC709 ZCU102 ZCU102 ZC706 ZCU102 ZC706 ZC706 ZC706 ZCU102 ZCU102

Freq. (MHz) 200 200 200 200 200 200 200 150 200 200 200
LUT (k) 148 (68%) 121 (28%) 252 (92%) 178 (65%) 120 (55%) 163 (59%) 147 (67%) 164 (75%) 129 (59%) 252 (92%) 260 (95%)
BRAM 798 (73%) 934 (32%) 912 (50%) 1460 (80%) 504 (46%) 912 (50%) 528 (48%) 948 (87%) 586 (54%) 912 (50%) 1382 (76%)

DSP 603 (67%) 664 (18%) 1144 (45%) 1350 (53%) 512 (57%) 1024 (41%) 588 (65%) 900 (100%) 528 (59%) 1144 (45%) 1032 (41%)

GOP/s 198.0 230.1 309 495.4 310.8 534.4 135.0 181.6 185.4 291.4 252.7
GOP/s/DSP 0.33 0.35 0.27 0.37 0.61 0.52 0.23 0.20 0.35 0.25 0.24

Alex
Net

VGG11

ResN
et-

18

M
ob

ile
NetV

2

Rep
VGG-A

0

VGG16

ResN
et-

50

0

200

400

600

800

1.30×

1.45×

1.51×
1.09×

1.41×

1.72× 1.15×

Pe
rf

or
m

an
ce

(f
ps

) Dense
Sparse

Fig. 7: Performance comparison between the dense streaming acceler-
ator and the proposed sparse streaming accelerators for representative
CNN workloads, targeting a U250 FPGA. Our tool generates designs
with up to 50% greater performance.

0.65 and 0.57 respectively for the ImageNet validation dataset.
This suggests 1/(1−0.65)=2.86 and 1/(1−0.57)=2.32 speed-up
at maximum. The gap between the theoretical maximum speed-
up and the improvement achieved is due to the overhead on
clock frequency and LUT usage, as described in Section III-A.

A detailed comparison between the dense and sparse engines
focusing on the 3rd convolutional layer of VGG16 is given in
Table IV, which is representative for many 3× 3 convolutional
layers across CNN models. The results demonstrate the perfor-
mance benefits of the proposed S-MVE module, as it is able
to effectively bypass zero multiplications, reducing the latency
by 60%. At the same time, the clock frequency and LUT usage
are penalised by 10% and 50% receptively, creating different
bottlenecks during the DSE for the entire network.

TABLE IV: A case study comparing dense and sparse architectures for
the 3rd convolutional layer of VGG16. The sparse hardware achieves
better performance with the overhead on LUT, FF and frequency.

Design LUT FF BRAM DSP Freq.
(MHz)

Lat.
(ms)

Dense 26,046 41,211 272 192 223 44.5
Sparse 38,112 48,895 272 192 200 17.8

1.5× 1.2× 1.0× 1.0× 0.9× 0.4×

B. Comparing with Existing Sparse Accelerators

In Table III, our work is evaluated against both instruction-
based sparse accelerators [13], [6], as well as a state-of-the-
art streaming but dense accelerator [11]. For sparse works,
we achieved up to 1.93× GOP/s/DSP on VGG16, which
demonstrates the benefit of combining post-activation sparsity
exploitation and streaming. Compared to a high-performance
streaming architecture [11], our work achieves 1.85× and
1.52× GOP/s/DSP on VGG16 and ResNet-18 respectively,
without any degradation on the network accuracy. This reit-
erates the impact sparsity has on performance.

Our hardware is not able to outperform [13] on ResNet-
50 due to the limited LUT resources. We observe that both
our design and the design in [13] are LUT-bounded, however,
compared with their instruction-based architecture, streaming
architectures require extra buffers for weight storage and
pipelining between layers, consuming additional LUTRAM and
BRAM. From table III, our design uses 4% less DSP than
[13], yet consumes 3% more LUT and 26% more BRAM
comparatively. Therefore, in order to fully exploit the potential
of our design, devices with more on-chip memory resources
are desirable.

VI. CONCLUSION

In this work, a toolflow is proposed for exploiting post-
activation sparsity in streaming-based CNN accelerators. We
address the key challenges which arise from non-deterministic
sparse execution including dynamic scheduling, data stream
synchronisation and statistics-aware design space exploration.
Overall, our method can achieve 1.41× to 1.93× greater
performance compared to existing instruction-based sparse ac-
celerators. With regard to future work, we are exploring the
opportunity of CNN-accelerator co-design, such as encouraging
input-sparsity of the slowest layer in the pipeline through a
sparsity regulariser.

ACKNOWLEDGEMENTS

For the purpose of open access, the authors have applied
a Creative Commons Attribution (CC BY) license to any
Accepted Manuscript version arising.

REFERENCES

[1] A. Kolesnikov, A. Dosovitskiy, D. Weissenborn, G. Heigold, J. Uszkoreit,
L. Beyer, M. Minderer, M. Dehghani, N. Houlsby, S. Gelly, T. Un-
terthiner, and X. Zhai, “An image is worth 16x16 words: Transformers
for image recognition at scale,” 2021.

[2] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang,
Y. Zhu, R. Pang, V. Vasudevan et al., “Searching for mobilenetv3,”
in Proceedings of the IEEE/CVF international conference on computer
vision, 2019, pp. 1314–1324.

[3] X. Ding, X. Zhang, N. Ma, J. Han, G. Ding, and J. Sun, “Repvgg:
Making vgg-style convnets great again,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2021, pp. 13 733–
13 742.

[4] J. Li, S. Jiang, S. Gong, J. Wu, J. Yan, G. Yan, and X. Li, “Squeezeflow:
A sparse cnn accelerator exploiting concise convolution rules,” IEEE
Transactions on Computers, vol. 68, no. 11, 2019.

[5] A. Gondimalla, N. Chesnut, M. Thottethodi, and T. Vijaykumar, “Sparten:
A sparse tensor accelerator for convolutional neural networks,” in Pro-
ceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, 2019, pp. 151–165.

[6] C. Zhu, K. Huang, S. Yang, Z. Zhu, H. Zhang, and H. Shen, “An efficient
hardware accelerator for structured sparse convolutional neural networks
on fpgas,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 28, no. 9, 2020.

[7] S. I. Venieris, A. Kouris, and C.-S. Bouganis, “Toolflows for mapping
convolutional neural networks on FPGAs: A survey and future directions,”
ACM Computing Surveys, vol. 51, no. 3, 2018.

[8] J. Cheng, L. Josipovic, G. A. Constantinides, P. Ienne, and J. Wickerson,
“Combining dynamic & static scheduling in high-level synthesis,” in
Proceedings of the 2020 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, 2020.

[9] L. Josipović, A. Marmet, A. Guerrieri, and P. Ienne, “Resource sharing in
dataflow circuits,” in 2022 IEEE 30th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM), 2022.

[10] A. Montgomerie-Corcoran, Z. Yu, and C.-S. Bouganis, “Samo: Optimised
mapping of convolutional neural networks to streaming architectures,” in
2022 32nd International Conference on Field-Programmable Logic and
Applications (FPL). IEEE, 2022, pp. 418–424.

[11] S. I. Venieris and C.-S. Bouganis, “fpgaconvnet: Mapping regular and
irregular convolutional neural networks on fpgas,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 30, no. 2, 2019.

[12] J. Li, K.-F. Un, W.-H. Yu, P.-I. Mak, and R. P. Martins, “An fpga-based
energy-efficient reconfigurable convolutional neural network accelerator
for object recognition applications,” IEEE Transactions on Circuits and
Systems II: Express Briefs, vol. 68, no. 9, 2021.

[13] L. Lu, J. Xie, R. Huang, J. Zhang, W. Lin, and Y. Liang, “An effi-
cient hardware accelerator for sparse convolutional neural networks on
fpgas,” in 2019 IEEE 27th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), 2019.

[14] S. I. Venieris, J. Fernandez-Marques, and N. D. Lane, “unzipfpga:
Enhancing fpga-based cnn engines with on-the-fly weights generation,” in
2021 IEEE 29th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM). IEEE, 2021, pp. 165–175.

[15] H. Sharma, J. Park, E. Amaro, B. Thwaites, P. Kotha, A. Gupta, J. K.
Kim, A. Mishra, and H. Esmaeilzadeh, “Dnnweaver: From high-level

deep network models to fpga acceleration,” in the Workshop on Cognitive
Architectures, 2016.

[16] A. Sohrabizadeh, J. Wang, and J. Cong, “End-to-end optimization of
deep learning applications,” in Proceedings of the 2020 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, 2020.

[17] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter perfor-
mance analysis of a tensor processing unit,” in Proceedings of the 44th
annual international symposium on computer architecture, 2017, pp. 1–
12.

[18] L. Liu and S. Brown, “Leveraging fine-grained structured sparsity for cnn
inference on systolic array architectures,” in 2021 31st International Con-
ference on Field-Programmable Logic and Applications (FPL). IEEE,
2021, pp. 301–305.

[19] M. Blott, T. B. Preußer, N. J. Fraser, G. Gambardella, K. O’brien,
Y. Umuroglu, M. Leeser, and K. Vissers, “Finn-r: An end-to-end deep-
learning framework for fast exploration of quantized neural networks,”
ACM Transactions on Reconfigurable Technology and Systems (TRETS),
vol. 11, no. 3, 2018.

[20] J. Duarte, S. Han, P. Harris, S. Jindariani, E. Kreinar, B. Kreis, J. Nga-
diuba, M. Pierini, R. Rivera, N. Tran, and Z. Wu, “Fast inference
of deep neural networks in FPGAs for particle physics,” Journal of
Instrumentation, vol. 13, no. 07, 2018.

[21] W. You and C. Wu, “Rsnn: A software/hardware co-optimized framework
for sparse convolutional neural networks on fpgas,” IEEE Access, vol. 9,
2021.

[22] L. Lu and Y. Liang, “SpWA: An efficient sparse winograd convolutional
neural networks accelerator on FPGAs,” in 2018 55th ACM/ESDA/IEEE
Design Automation Conference (DAC), 2018.

[23] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,
B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally, “Scnn: An
accelerator for compressed-sparse convolutional neural networks,” in
Proceedings of the 44th Annual International Symposium on Computer
Architecture, 2017.

[24] A. Gondimalla, N. Chesnut, M. Thottethodi, and T. N. Vijaykumar,
“Sparten: A sparse tensor accelerator for convolutional neural networks,”
in Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, 2019.

[25] Y. Liang, L. Lu, and J. Xie, “Omni: A framework for integrating
hardware and software optimizations for sparse cnns,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 40,
no. 8, pp. 1648–1661, 2020.

[26] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Commun. ACM, 2017.

[27] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, 2015.

[28] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[29] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2015.

	Introduction
	Related Works
	Architecture
	Sparse Matrix-Vector Engine
	Pipelined Convolutional Layer

	Design Space Exploration
	MAC Allocation
	Buffer Depth Sizing

	Evaluation
	Dense vs Sparse Design Comparison
	Comparing with Existing Sparse Accelerators

	Conclusion
	References

