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ABSTRACT

High-level synthesis (HLS) refers to the automatic translation of a software program written
in a high-level language into a hardware design. Modern HLS tools have moved away from the
traditional approach of static (compile time) scheduling of operations to generating dynamic circuits
that schedule operations at run time. Such circuits trade-off area utilisation for increased dynamism
and throughput. However, existing lowering flows in dynamically scheduled HLS tools rely on
conservative assumptions on their input program due to both the intermediate representations
(IR) utilised as well as the lack of formal specifications on the translation into hardware. These
assumptions cause suboptimal hardware performance. In this work, we lift these assumptions
by proposing a new and efficient abstraction for hardware mapping; namely h-GSA, an extension
of the Gated Single Static Assignment (GSA) IR. Using this abstraction, we propose a lowering
flow that transforms GSA into h-GSA and maps h-GSA into dynamically scheduled hardware
circuits. We compare the schedules generated by our approach to those by the state-of-the-art
dynamic-scheduling HLS tool, Dynamatic, and illustrate the potential performance improvement
from hardware mapping using the proposed abstraction.
KEYWORDS: Gated Static Single Assignment; High-Level Synthesis; Dynamic Scheduling

1 Introduction and Related Works

High Level Synthesis (HLS) tools convert a specification of a hardware circuit provided in
a high level programming language such as C/C++ into a hardware description language
(HDL) that can then be synthesised into the desired circuit. Input programs in high level
languages are often described with sequential semantics and considerable control-flow as
CPUs are highly optimised to execute such programs. The challenge with HLS lies in success-
fully converting such a description into highly parallel circuits. To do so, most commercial
tools such as Vivado HLS by AMD and Catapult HLS by Siemens utilise static scheduling, i.e.
the clock cycle at which each operation executes is determined at compile time rather than
runtime. Static scheduling, which is sensitive to the latency of the operators, generates circuits
with predictable execution times, low resource consumption and high performance for input
programs with regular control-flow. However, in programs with irregular control-flow, this
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approach can result in low throughput as static scheduling relies on worst-case assumptions
of operation latencies in the absence of runtime information.

One solution to this issue is to generate circuits that execute purely based on dataflow,
i.e. an operation is only executed when all its inputs contain valid data from previous
operations. Such a circuit would execute in a manner that is insensitive to the latency of the
components that constitute it and would be able to execute each operation as early as possible.
Working towards generating pure dataflow circuits, [6] introduced Dynamatic, a dynamically
scheduled HLS flow which bases its foundations on latency insensitive circuit design [1,
2]. They demonstrate up to 2.5x improvement in execution time and 4x improvement in
throughput on programs with irregular control-flow when compared to statically scheduled
HLS at the cost of up to 5x more resources. Dynamatic uses a lowering flow that transforms a
control-dataflow (CDFG) 3 representation of the program (in LLVM IR) directly to a dataflow
circuit by mapping IR constructs to predefined elastic modules. However, this process requires
significant static analysis [3] to prevent superfluous control-flow dependencies that limit the
amount of parallelism in the generated hardware.

To avoid the pitfalls of mapping a CDFG to a dataflow circuit as well as the limitations of
static analysis from the lack of runtime information, [4, 9] propose transforming LLVM IR
into new IRs that abstract dataflow into the representation before lowering to a predefined
set of elastic components. [4] propose to use Gated Static Single Assignment [8] (GSA) while
[9] propose the handshake dialect in the MLIR ecosystem. However, [4] neither provide formal
semantics of the transformation nor the resulting GSA, which makes it hard to reason about
correctness of lowering. The handshake IR restricts the ability to perform further static analysis
as it relies explicitly on runtime information. Instead, we propose a novel version of the GSA
IR, h-GSA, that aims to alleviates both these issues. The proposed lowering flow first uses
Compcert [7] to perform a formally verified conversion of an SSA based IR to GSA [5], then
transforms this into h-GSA, a version of GSA that is amenable to elastic circuit generation,
and maps h-GSA into a predefined set of elastic components.

The following sections demonstrate the increased dynamism that our methodology can
generate over Dynamatic and introduces the formal semantics of GSA nodes and invariants
that hold when transforming GSA to h-GSA. Finally, we discuss the various future directions
of research we envision this work will enable.

2 Motivating Example

This section motivates the use of GSA as in intermediate representation for HLS by
comparing the execution schedules generated by our tool vs. Dynamatic for a simple mo-
tivating example (Figure 1a). Figure 1b shows the schedule generated by Dynamatic. As
a consequence of lowering directly from a CDFG (LLVM IR), Dynamatic generates pure
dataflow circuits within basic blocks, but requires basic blocks to start sequentially. This
means L2, which modifies variable b needs to start after L1 (which increments a with g(j))
has started, even though there is no data-dependency between a being incremented and b
being incremented. This results in reduced task level parallelism, where the second iteration
of L1, shown in green in the schedule, only starts on cycle 8.

On the other hand, Figure 1c shows the schedule that is achieved by using h-GSA. This
achieves the optimal schedule for this example. As there are no basic-blocks in GSA, there are

3dataflow within basic blocks and control-flow between basic blocks



int foo() {
int i, j, k;
int a = 3, b = 5;
L0: for (i=0; i<3; i++)
a += f(i);

L1: for (j=0; j<4; j++) {
a += g(j);
L2: for (k=0; k<3; k++)

b += h(j, k); }
return a + b; }

(a) Motivating example.
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(b) Pipeline schedule by Dynamatic [6].
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(c) Pipeline schedule by our work.

Figure 1: The red arrows mean the data dependence in the program. Existing dynamic
scheduling restricts the loop iteration to start sequentially, although they can compute in par-
allel. Our work safely enables out-of-order loop computations by mapping GSA to hardware.

no restrictions on when instructions start based on control-flow dependencies. Instead, only
data-dependencies are taken into account, leading to all operations executing as soon as their
dependencies are met. In this example, lowering via h-GSA allows L0 and L2 to start at the
same time. Due to the write-after-write dependency between assign a in L0 and L1, L1 needs
to wait for L0 to finish before it can start, which is shown by the green loop waiting for the
blue loop to finish (Figure 1c). However, contrary to the schedule provided by the Dynamatic
circuit, L2 (red) can start executing at the first cycle, because there is no data-dependency
between L0 and L2. This additional dynamism is a feature of GSA because it provides a
purely dataflow centric view of the whole program using the primitive functions that are
further described in section 3.

3 IR Level Formal Semantics and Hardware Mapping

This section will describe the notable differences between h-GSA and the version of GSA [8]
formalised in CompCert [5]. Starting from such a formal description means that there is a well-
understood starting point on which we can base the translation from GSA into dynamically
scheduled circuits. GSA is an extension to SSA, defining two types of gating ϕ-instructions,
namely µ-instructions at loop headers and γ-instructions at the exit of conditional statements.
Additional nodes called η-instructions are also added at loop exits. These nodes can then be
assigned different semantics based on their usual control-flow (software) semantics, and in
h-GSA, dataflow (hardware) semantics, which are shown in Table 1.

Our work performs a lowering from this GSA representation to a netlist of pre-defined
components. Each operation in the software program is translated into a hardware component
and connected using the handshake interface [6]. The arithmetic and logic operations used
by our work are the same as the ones in Dynamatic, however, we add additional hardware
modules which implement the hardware semantics of the GSA-specific IR constructs.

Interesting modifications had to be performed to the GSA program produced by Comp-
CertGSA before we could generate functional hardware from it. Even though the transforma-
tion to GSA is formally verified, the hardware requires stronger properties about the structure
of the GSA to execute correctly. Firstly, additional guarantees are needed about registers not
appearing after they have been gated. Secondly, each µ instruction has to be paired with



Table 1: Semantics of GSA functions in both hardware and software. These functions do not
perform computation and only forward inputs to outputs when specific conditions are met.

Instruction Software Semantics Hardware Semantics

d← µ(r0, ri) Behave like a ϕ-instruction from
SSA and inspect the incoming
control-flow edge to choose the reg-
ister to assign to d.

Stateful component accepting in-
puts from r0 the first time, then ac-
cepting inputs from ri until it is re-
set.

d← γ(
−−−−→
(pi, ri)) Make a local choice of which regis-

ter ri to pick based on the evalua-
tion of its predicate pi.

Component that selects the ri based
on the evaluation of pi.

d← η(p, r) Only allow execution of the seman-
tics to proceed when p evaluates to
true.

Component stalls until p is true. It
also resets its corresponding µ in-
struction to accept new inputs.

at least an η instruction so that it is reset upon loop exit. Finally, particular patterns need
additional GSA nodes (described below), where the arrows represent a control-flow graph,
µ-η pairs define entry and exit of loops, and P and C are producers and consumers of values.

C

P
µ

·

When a producer is outside of the loop that contains its consumer,
then µ nodes needs to be generated for it. This is not the case in
software because the value assigned by the producer will always be
accessible by reading its register, but in a dynamic circuit it needs to
be passed around the loop (µ generates the same value at each new
loop iteration).

P

µ

η

C

One also needs to guarantee that any consumers that are separated
from their producer by a loop have an appropriate µ and η pair. This
rule in particular is quite hardware specific, because through control-
flow execution of the program this pair would not be required, as
the value of the producer P remains unchanged, and can be read by
the consumer. In dynamic hardware it is needed to continually feed
values through the circuit.

4 Conclusion and Future works

In conclusion, using GSA as an IR for a dynamically scheduled HLS tool demonstrates
promise towards improving upon Dynamatic. In addition to that, building upon precisely
specified semantics reduces the gap towards a verified translation from software to hardware,
making it possible to build correct-by-construction dynamic circuits. It is currently difficult
to verify the correctness of a dynamic circuit specifically because it is latency-insensitive,
leading to a notion of correctness which specifies that “eventually” the outputs should be
consistent. There are many topics that still need to be addressed however, such as efficient
handling of memory and automatic buffering of circuits. These are features that Dynamatic
already supports, and would be needed to carry out a fair performance comparison.
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