
Refining Datapath for Microscaling ViTs
Can Xiao

Imperial College London
cx922@ic.ac.uk

Jianyi Cheng
University of Edinburgh
jianyi.cheng@ed.ac.uk

Yiren Zhao
Imperial College London

a.zhao@imperial.ac.uk

Abstract—Vision Transformers (ViTs) leverage the transformer
architecture to effectively capture global context, demonstrating
strong performance in computer vision tasks. A major chal-
lenge in ViT hardware acceleration is that the model family
contains complex arithmetic operations that are sensitive to
model accuracy, such as the Softmax and LayerNorm operations,
which cannot be mapped onto efficient hardware with low
precision. Existing methods only exploit parallelism in the matrix
multiplication operations of the model on hardware and keep
these complex operations on the CPU. This results in suboptimal
performance due to the communication overhead between the
CPU and accelerator. Can new data formats solve this problem?

In this work, we present the first open-source ViT accelerator
that maps all operations of the ViT models onto FPGAs. We
exploit a new arithmetic format named Microscaling Integer
(MXInt) for datapath designs and evaluate how different design
choices can be made to trade off accuracy, hardware perfor-
mance, and hardware utilization. Our contributions are twofold.
First, we quantize ViTs using the MXInt format, achieving
both high area efficiency and accuracy. Second, we propose
MXInt-specific hardware optimization that map these complex
arithmetic operations into custom hardware. Within 1% accuracy
loss, our method achieves at least 93× speedup compared to
Float16 and at least 1.9× speedup compared to related work.

I. INTRODUCTION

Hardware acceleration for transformers has shown sig-
nificant performance benefits compared to general proces-
sors [1], [2], [3], among which Vision Transformers (ViTs)
offer promising performance for capturing global image re-
lationships [4]. Compared to traditional Convolutional Neural
Networks (CNNs), ViTs present new model features: 1) these
models often contain millions of parameters, leading to a
large memory size; and 2) they contain non-linear operations,
requiring complex hardware operator designs.

Traditional techniques for ViT acceleration focus on 1)
integer quantization and 2) datapath optimization, exploiting
the approximation tolerance of ViT models. First, integer
quantization represents numbers as small integers, optionally
with a scaling factor, leading to both smaller memory and
circuit area [2], [3]. Second, datapath optimization determines
new designs with simpler logic and similar results, leading to
a smaller circuit area [5].

Still, non-linear operations in ViT, such as LayerNorm
and Softmax, face challenges in efficient acceleration. These
operations contain complex mathematical operations, such as
exp() and sqrt(), and require large value ranges, restricting
existing integer quantization. Existing design methods rely on
the CPU and only accelerate part of the ViT models in FPGA
fabric [2], [3]. This leads to a working but complex system

TABLE I: Our MXInt design method maps all non-linear
operations in ViTs into efficient hardware, achieving lower
bitwidths than traditional fixed-point designs.

Methods Precision
on fabric

LayerNorm GELU Softmax

Fabric Bitwidth Fabric Bitwidth Fabric Bitwidth

AutoViTAcc [3] fixed-point ✗ 8 ✗ 8 ✗ 8
[9] fixed-point ✓ 8 ✓ 8 ✓ 8
HeatViT [2] fixed-point ✗ 8 ✓ 8 ✓ 8
SDA [5] fixed-point ✓ 8 ✓ 8 ✓ 8

Our Work MXInt ✓ 5 ✓ 5 ✓ 2

design with suboptimal performance due to the communication
overhead between the CPU and the accelerator.

In this work, we unlock this by exploiting a recently
studied data format named Microscaling Integers (MXInt) [6].
The MXInt format shares an exponent among a block of
integer values, forming a more compact floating-point format.
This reduces memory size while maintaining high model
accuracy [7]. The existing work in MXInt hardware mapping
focuses on matrix multiplications [8], but it remains an open
question regarding optimizing non-linear operations in MXInt.

In this work, we present fully quantized ViTs in MXInt
and propose datapath optimization techniques for the effi-
cient acceleration of both linear and non-linear operations.
To ensure fairness in quantization, we focus on post-training
quantization (PTQ) and compare accuracy without fine-tuning,
as fine-tuning entails complex training techniques that may
vary from model to model. Following prior work on MXInt
quantization [7], we restrict the accuracy loss of the final
design to within 1% to preserve high model accuracy. We then
explore datapath optimization opportunities and show how
to efficiently map MXInt operators into efficient hardware,
including non-linear operations. This leads to fully hardware-
accelerated ViTs, meaning that all operations are mapped into
efficient hardware, as illustrated in Table I. Our contributions
are as follows:

• We propose MXInt-based ViT accelerators, reducing the
memory size up to 4.99× within 1% accuracy loss;

• We propose MXInt-specific datapath optimization for
accuracy-sensitive arithmetic operators in the ViTs (e.g.
GELU, Softmax and LayerNorm), reducing the area at
least by 16× within 1% accuracy loss; and

• Over a set of models, we show our design methods
achieve at least 93× speedup compared to Float16 and
at least 1.9× speedup compared to related work.

The rest of the paper is organized as follows. Section II
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(a) A standard floating point format and a
MXInt format.

Formats Config Accuracy
Memory
Density

FP32 - 81.80% 1×
Int16 W16A16 80.05% 2×

MXInt8 W6.03/A8.5 81.72% 4.99×

(b) Quantization results of DeiT Base [10]
on ImageNet [11]. MXInt balances model
accuracy and memory efficiency, leading
to a better choice of formats for ViT quan-
tization. The decimal part derived from the
shared exponent value.

Require: X ▷ Input Features
Require: H ▷ Number of heads
Require: L ▷ Number of hidden layers

1: Xn ← LayerNorm(X)
2: for i ∈ [0, H) do
3: Qi ←WQi

·Xn

4: Ki ←WKi
·Xn

5: Vi ←WVi
·Xn

6: Ai ← Qi·Ki
T

√
dk

7: Âi ← Softmax(Ai)
8: Bi ← Âi · Vi

9: end for
10: Bc ← Concat(B0..BH−1)
11: Bo ←W0 ·Bc

12: Bn ← LayerNorm(Bo +Xn)
13: U ←WU ·Bn

14: D ←WD · (GELU(U))
15: O ← D +Bn

16: return O

(c) An algorithm view of a block in the
DeiT model. Values highlighted in blue
represent quantized values, and operations
highlighted in green represent mxint spe-
cific approximated operations.
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(d) An architecture view of the proposed
hardware accelerator. The proposed architecture
pipelines the model in a hierarchical dataflow, and
tailors each operation for high area efficiency.

Fig. 1: Motivating example: dataflow hardware acceleration of a ViT in MXInt.

illustrates an overview of the proposed accelerator architecture.
Section III describes our hardware architecture and design
choices in detail. Section IV evaluates the effectiveness of our
work and compares performance with related work. Section V
compares our work with related work qualitatively.

II. MOTIVATION

Why MXInt? Here we first introduce the MXInt format.
Figure 1a compares the standard floating-point numerical
format with the MXInt format. The top of the figure illustrates
the standard floating-point format, which contains a sign bit, an
exponent, and a mantissa [12]. The MXInt format has similar
components to the standard floating-point format but allows a
block of values to share the exponent, where the block size
is user-defined. MXInt provides finer granularity compared to
the traditional fixed-point format that shares a scaling factor
across all tensor values. Prior work [7] shows that MXInt
can achieve both high model accuracy and high memory
density for software LLM quantization. Our observation from
Figure 1b verifies that this still holds for ViT models.

How to map into MXInt? Figure 1 provides a high-level
overview of the proposed accelerator architecture design. Fig-
ure 1c illustrates an algorithmic view of a transformer block
in ViT models. There are various design choices on hardware
architecture for the ViT accelerators, such as systolic arrays
and custom dataflow architectures. The benefits of dataflow
architectures have been widely studied in the literature [13].
Here we choose the dataflow architecture due to its high
throughput and low control flow overhead.

The corresponding accelerator architecture is shown in
Figure 1d. In the figure, each operation in Figure 1c is mapped

into a hardware operator unit with a dataflow interface. Each
hardware unit is dedicated to computing a specific function for
its inputs, minimizing control flow overhead. In our design,
the parameters are initially stored off-chip due to the large
size required by the ViT models. A predefined scheduler is
implemented to prefetch the parameters to on-chip memory
through a ping-pong buffer, as shown at the top right of
Figure 1d. Similar to most dataflow architectures, the tensor
is tiled due to its large size and streamed into the accelerators
for deeply pipelined computation. Design choices for tiling
sizes and streaming order have been widely studied in prior
work [14], [15], [16]. These are outside our scope, while
we focus on the datapath optimization of these operators.
We will describe our MXInt quantization and linear operator
implementation in Section III-A.

How to optimize MXInt hardware? The ViTs also contain
non-linear operations, and the precision required by these
operations is often high due to their high sensitivity to model
accuracy. This leads to significant circuit area due to both
high precision and arithmetic complexity. We will show how
to lift this restriction by optimizing the datapath of non-linear
operators in Section III-B.

III. METHODOLOGY

A. Opportunities and Challenges for MXInt

The hardware design of efficient MXInt operators faces
several optimization opportunities regarding the block-sharing
feature of the MXInt data format. Traditional operators com-
pute on individual values independently because their values
are presented in standalone formats. Such a design method is
inefficient for MXInt values because the common results of
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Fig. 2: Comparison between the standard floating-point format and MXInt on the dot product operator.

the shared exponent could be shared across the values in the
same block.

For simplicity, here we show a dot product design example
to illustrate how mapping into MXInt causes hardware design
improvements. Figure 2a shows a traditional implementation
of a dot product unit with k values computing in parallel. The
precision of the values is in standard floating-point to preserve
high model accuracy. In the data path, standard floating-point
multipliers and adders are used for computation. Using these
operators often leads to significant area overhead because
the normalization between values to the same dynamic range
requires complex dynamic shift logic [17]. The normalization
circuit is required at both the input and the output of each
operator, leading to huge area overhead in total. There has been
effort in optimizing normalization for individual floating-point
operators [18], but they miss MXInt-specific optimizations
such as exponent sharing.

We design fully customized operators for MXInt values, as
illustrated in Figure 2b. Here, we assume that the exponent of
x is shared by k values, and the exponent of W is shared by
h×k values. In the dot product unit, all the operators perform
either fixed-point or logical operations. The overhead caused
by the expensive dynamic shift logic in standard floating-
point is reduced from two aspects: 1) only one dynamic shift
operator is required per block, where its result is shared within
the block; and 2) the bitwidth of the mantissas in MXInt
is often small after quantization, making the transformation
into unrolled constant shifts affordable. This enables us to
compute values with dynamic ranges in efficient hardware
while preserving high accuracy.

A key challenge is to balance the precision and circuit
area by determining an efficient mantissa bitwidth for MXInt
values. A small bitwidth in MXInt mantissas could lead to
quantization errors, while a large bitwidth could lead to a
large operator area. Particularly, the bitwidth required by the
accumulator used in the linear operations scales with the tensor
sizes. A significantly large tensor with a large variance in
element values could cause the accumulator to both underflow

and overflow.
In this work, we focus on the hardware datapath optimiza-

tion of non-linear operations, as linear operations have already
been studied in related work [8]. For linear operations, we rely
on greedy search in software quantization to determine the
minimal bitwidth of the mantissa to preserve high accuracy
within a 1% loss. We observed that the shared exponent can
effectively handle overflow with negligible effects on model
accuracy, but the underflow requires more bits. Therefore,
we empirically determine the additional bits required by the
accumulator operator and expand the bitwidth of the accu-
mulator to minimize quantization loss. Particularly for DeiT
models, we set the mantissa of the accumulator in all the linear
operators to be 12 bits to perform lossless addition. A similar
method is applied to other compute-intensive operators, such
as convolution operators.

Finally, different shared block sizes in MXInt between
layers could lead to additional hardware logic to ungroup
and regroup these values between computations. This is more
related to the control path of the circuit and is out of the
scope of our work. In this work, we choose the block size to
always be the same as the tile size, as shown in Figure 2b to
minimize the control flow overhead on grouping values. For
instance, a linear operator has exponents shared among 16 and
256 values in activation and weights, respectively. In the rest
of the section, we will describe our optimization techniques
for the datapath of non-linear operators.

B. Datapath Optimization in MXInt

In this section, we now show how to optimize all these non-
linear functions in the mantissa domain with fewer numbers
of bits. Our work focuses on optimizations for ViTs, but it
could also be applied to MXInt accelerators for other ML
models, leading to different results of bitwidth. Here we
take three core operators from three representative classes of
operations for illustration: LayerNorm, Softmax, and GELU.
These operations are commonly seen in ViT models and
require complex arithmetic circuits to compute.
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Fig. 3: Optimized datapath for MXInt LayerNorm.

1) LayerNorm Approximation: LayerNorm operations have
been widely used in transformers, including ViTs, which
scale values in a tensor to a fixed range [19]. The standard
expression of the LayerNorm operation is presented as follows.

y =
x− E(x)√
V ar(x) + ϵ

γ + β (1)

x and y denote the input and output tensors, and E(.)
computes the expectation and V ar(.) computes the variance,
respectively. ϵ, γ, and β are constants in the model.

Existing approaches, including [9] and SDA [5], focus on
integer-based datapath optimization for hardware acceleration,
but their bitwidth is still large compared to our MXInt designs.
This is because the absence of dynamic range in integer format
requires more bits to represent the same range of values.

We now describe our optimization for LayerNorm in MXInt.
Benefiting from the small mantissa bitwidth of MXInt, we sep-
arate the computation of the shared exponent and mantissas.
An MXInt value can be represented as follows.

x = 2xexm (2)

xe and xm are the unsigned shared exponent and signed
mantissa for a value x, where xe is shared by a group of values.
When computing Softmax, we are effectively dealing with
MXInt values coming from different blocks that are scaled
by a set of different exponent values (x0

e, x
1
e, ...). As shown

in Figure 3, we apply a re-quantization step that forces these
values from different groups to use the same exponent (xmax

e )
by dynamically right-shifting on mantissa values. Effectively,
for each individual MXInt value, we have:

x = 2xexm = 2x
max
e xm′ = λxm′ (3)

where xm′ is the right-shifted version of xm, and the right-
shifting amount depends on xmax

e −xe. As shown in Figure 3,
since xmax

e is now shared across all values that are inputs to
the Softmax function, we can effectively treat it as a constant
λ = xmax

e for the ease of expression.
We then substitute the expression of x into Equation 1 and

extract the exponent as follows.

y =
λxm − E(λxm)√
V ar(λxm) + ϵ

γ + β (4)

=
λ(xm − E(xm))√
V ar(λxm) + ϵ

γ + β (5)
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TABLE II: Comparison with related work on LayerNorm
optimization for DeiT-Tiny. Our work achieves the minimal
accuracy loss on fabric at the smallest bitwidth.

Methods On Fabric Bitwidth Accuracy Accuracy Loss

Original ✗ 16 72.13% -
Auto-ViT-Acc[3] ✗ 16 72.13% 0
HeatViT [2] ✗ 16 72.13% 0
[9] ✓ 8 71.66% 0.472%
SDA [5] ✓ 8 71.66% 0.472%

Vanilla MXInt ✓ 13 72.078% 0.154%
Optimized MXInt ✓ 5 71.89% 0.242%

We approximate ϵ to be zero so that we can extract the
exponent from the square root function.

≈λ(xm − E(xm))

λ
√
V ar(xm)

γ + β (6)

≈ (xm − E(xm))√
V ar(xm)

γ + β (7)

A key novelty of our work is that we convert an MXInt-
based LayerNorm operation into an integer-only operator
dealing with only the mantissa component (xm) in the MXInt
format. This significantly simplifies the circuitry required to
implement the LayerNorm function.

Still, after computing the variance V ar(.), we end up with
a large result in a larger bitwidth from the accumulator,
determined by the tensor size. This is followed by a division
and a square root operation ( 1√

V ar(.)
). Existing methods use

large bitwidth in fixed-point numbers [9] or cast the values to
floating-point numbers to preserve high precision in a small
bitwidth. We combine the best of both approaches, casting the
values to a small floating-point format followed by a LUT-
based method to avoid high computational overhead.

Specifically, we rescale (rescaling in Figure 3) the variance
(V ar(xm)), which is represented in the mantissa domain to a
floating-point number xv

m′2x
v
e′ .

1√
xv

= (xv)−1/2 = (xv
m · 2x

v
e )−1/2 = 2−xv

e/2 · (xv
m)−1/2.

(8)

Here only xv
m needs complex operations 1√ and xv

e/2 can be
handled by shift. We use a LUT to represent the function 1√
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to reduce the computation overhead.

x =

LUT 1√ (xv
m)2(−

xv
e
2 ), xv

e mod 2 = 0,

LUT 1√ (
xv
m

2 )2(−
xv
e+1

2 ), xv
e mod 2 ̸= 0.

(9)

A key benefit of our approach is that the required LUT entries
are significantly smaller due to excluding xv

e/2, and the area
of the dynamic shift operator in rescaling is small due to the
low precision of mantissas.

Figure 4 illustrates the accuracy loss of the model over
different LUT entries. We observe that a minimum of 4 bits
is required by xv

m to preserve the model accuracy within
a 1% loss. Table II compares our optimization with related
work on accuracy loss at the system level. We observed that
5 bits are required for MXInt ViTs when combined with
optimizations on other layers. Still, our optimization saves a
significant number of LUT entries compared to the vanilla
MXInt operator implementation. Compared to related work
using integer-based datapath optimization, our work achieves
minimal accuracy loss with a significantly smaller bitwidth,
thanks to the dynamic ranges provided by the shared exponent.

2) GELU Approximation: The mathematical definition of
the GELU function involves complex arithmetic operations
with high quantization sensitivity, particularly for small input
values [20]. The standard formulation of GELU is as follows.

GELU(x) =
x√
2π

∫ x

−∞
e−t2/2dt (10)

Existing work approximates it into a polynomial-based error
function (erf) to reduce the computational overhead [2], [9].

GELU(x) ≈ x

2

[
1 + Lerf

(
x√
2

)]
(11)

Benefiting from the small bitwidth of mantissas in MXInt,
we further push the boundaries of such an approximation and
propose a LUT-based method to map GELU into efficient
hardware operators in MXInt.

A key challenge in the LUT-based optimization is that
traditional designs still require input values containing both the
exponent and the mantissa, leading to a significant number of
entries. However, this overhead may be affordable for MXInt
designs, thanks to the small mantissa bitwidth of MXInt
values. We present an efficient LUT-based optimization that
partitions its input domain into three parts, as illustrated in
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Figure 5. The absolutely higher ranges on both ends are
approximated to the ReLU function, and the small value range
is mapped into a LUT.

y =

 x, x ≥ a
LUTGELU (x) if − a < x < a
0, x ≤ a

(12)

The optimized datapath is illustrated in Figure 6. Since there
is only a small difference between the input and the output of
the GELU function, the exponent value does not change and
is directly forwarded to the output. For the small values, each
MXInt value as a floating-point number is cast to a fixed-
point number and passes through the LUT. The proposed
design involves two design constraints. First, a defines the
LUT domain that covers the non-linear range for small values,
and the bitwidth of the LUT determines the resolution of
the curve. Second, the bitwidth of the LUT determines the
resolution of the curve.

The design space explorations of both the LUT domain and
its bitwidth are shown in Figure 7 and Figure 8. In Figure 7,
we evaluate the tradeoff between accuracy and LUT entries
in the LUT domain. A larger domain covers a wider non-
linear range; however, more bits are required to preserve the
same resolution. A similar tradeoff is observed with the LUT
entries. For a fixed LUT domain, a smaller bitwidth leads to
fewer LUT entries, reducing circuit area at the cost of accuracy
loss. In the figures, we show that a minimal domain, a = 3,
and a minimal bitwidth of 4 are required for MXInt ViTs.
These small values make our LUT-based approach amenable
to mapping onto an area-efficient datapath.

We compare our optimization with related work in Table III.
Both Huang et al. [9] and HeatViT [2] exploit the integer-
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TABLE III: Comparison with related work on GELU optimiza-
tion for DeiT-Tiny. Our work achieves the minimal accuracy
loss on fabric at the smallest bitwidth.

Methods On Fabric Bitwidth Accuracy Accuracy Loss

Original ✗ 16 72.13% -
Auto-ViT-Acc[3] ✗ 16 72.13% 0
HeatViT [2] ✓ 8 71.95% 0.137%
[9] ✓ 8 71.95% 0.137%
SDA [5] ✓ 8 70.03% 2.132%

Vanilla MXInt ✓ 14 72.102% 0.030%
Optimized MXInt ✓ 5 72.084% 0.048%

based approximation in Equation (11). They preserve high ac-
curacy, but the bitwidth remains large. SDA [5] approximates
GELU into the ReLU6 function [21] for Stable Diffusion
models but loses significant accuracy for ViTs due to their
sensitivity to precision. In comparison, our approach achieves
the best accuracy at the smallest bitwidth. Our MXInt-specific
optimization also saves a significant number of entries com-
pared to the vanilla LUT-based MXInt implementation.

3) Softmax Approximation: The Softmax function rescales
the elements in a tensor to be in the range between 0 and 1,
with the sum of the output tensor being 1 [22]. The standard
arithmetic expression of the Softmax operation is as follows.

yi =
exp(xi)∑
j exp(xj)

(13)

xi and yi represent the ith elements of the input and output
tensors, respectively. This operation is expensive in circuit
area because it requires hardware units to perform exponential
functions and divisions. These hardware units must be imple-
mented in a general form to compute with arbitrary values.

Integer-based datapath optimization for Softmax has been
widely studied. A popular approximation is to replace it
with the subtraction of the maximum element of the sum
dimension [23], [24], [9], [2], [25], [5]. However, this method
cannot be directly applied to MXInt values due to their
shared exponent. The llama.cpp project [24] proposes an
optimization that separates the mantissa and exponent parts
of a floating-point value for efficient computation. However,
this method targets the CPU architecture and still relies on its
efficient exp hardware peripherals.

We adopt the approach by llama.cpp and extend it
to MXInt datapath optimization. Specifically, we propose a
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TABLE IV: Comparison with related work on Softmax op-
timization for DeiT-Tiny. Our work achieves the minimal
accuracy loss on fabric at the smallest bitwidth.

Methods On Fabric Bitwidth Accuracy Accuracy Loss

Original ✗ 16 72.13% -
Auto-ViT-Acc[3] ✗ 16 72.13% 0
HeatViT [2] ✓ 8 71.65% 0.482%
[9] ✓ 8 71.916% 0.216%
SDA [5] ✓ 8 72.12% 0.012%

Vanilla MXInt ✓ 16 72.148% +0.016%
MXInt to match SDA ✓ 5 72.118% 0.014%
Optimized MXInt ✓ 2 72.01% 0.122%

LUT-based approach that transforms the exponent ex into an
expression of integers n and a fixed-point number r as follows.

ex = 2x loge
2 (14)

n = ⌊fp2Int(x log2(e))⌋ (15)
r = x log2(e)− n (16)

ex = 2n+r = 2n · 2r (17)

fp2Int casts the floating-point format to fixed-point numbers.
Instead of computing 2r using arithmetic operators, we choose
to map the function into a LUT, shown as follows.

2r ≈ LUTpow2(r) (18)
ex ≈ 2n · LUTpow2(r) (19)

Benefiting from the efficient representation of MXInt, only
a small number of bits are required to represent n and r. n is
handled by the shift operation, and its shift bits are determined
by the bitwidth of r. An efficient r could significantly save
both the unrolled shift operator area and the number of LUT
entries.

A key benefit of this optimization is that the output values
are already represented in a floating-point number format
(2n · LUTpow2(r) = 2xexm), and can be passed to perform a
division efficiently, as shown below:

x1

x2
=

xm12
xe1

xm22xe2
=

xm1

xm2
2xe1−xe2 (20)

This leads to a significant reduction in circuit area compared
to the vanilla approach that casts all values to floating-point
before computing exp.

Figure 9 shows the design space exploration for the bitwidth
of r over different models. We observed that the bitwidth
required for r is small, only requiring two bits to preserve



TABLE V: Model accuracy over different quantization tech-
niques and precisions. MXInt quantization achieves lower bits
compared to traditional approaches. MXIntN means N -bit
mantissa. The exponent is always 8-bit in MXInt. The block
size is 16 for activations and 256 for parameters.

Precision DeiT Tiny DeiT Small DeiT Base

Parameters Activations % ∆% % ∆% % ∆%

Float32 Float32 72.13 0.00 79.83 0.00 81.80 0.00
Float8 Float8 71.26 -0.87 79.26 -0.57 81.74 -0.06
Int16 Int16 71.85 -0.28 79.34 -0.49 80.05 -1.75
Int8 Int8 0.10 -72.03 0.11 -79.72 0.10 -81.70

MXInt8 MXInt8 72.04 -0.09 79.80 -0.03 81.84 0.04
MXInt6 MXInt8 71.56 -0.57 79.42 -0.41 81.72 -0.08
MXInt6 MXInt6 70.97 -1.16 79.13 -0.70 81.70 -0.10
MXInt4 MXInt6 54.61 -17.52 70.21 -9.62 77.53 -4.27
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Fig. 10: Speedups achieved by our work (shown in green).

high model accuracy. This leads to an efficient datapath design
for the exponential function in MXInt. Table IV compares our
design with related work. We present an intermediate design
point to compare with the state-of-the-art design by SDA [5]
and show that our approach achieves the highest accuracy
with the smallest bitwidth. The optimized datapath in our final
designs only requires two bits under the accuracy loss budget.

IV. EXPERIMENTS

In this section, we evaluate the proposed MXInt datapath
optimization by addressing the following questions.

1) What are the bitwidth saving breakdown by quantization
the whole ViTs in MXInt?

2) What are the system speedup achieved by MXInt datapath
optimization bring?

3) What are the insights for designing future MXInt accel-
erators?

We evaluated our work on the DeiT family [10], including
DeiT Tiny, DeiT Small, and DeiT Base, on the ImageNet
dataset [11]. All of them were obtained directly from PyTorch
Image Models [26]. We evaluated the model accuracy on
PTQ results to show the scalability of our approach so that
no GPU computing time is required for fine-tuning. We
target Alveo U250 FPGAs due to their availability, but our
datapath optimization results are independent of the FPGA
platform. The version of Xilinx software used was 2023.2.
Our results were obtained from cycle-accurate simulation and
the implementation reports from Vivado. The results of related
work were obtained from their publications. To ensure fairness,
we compare our work with the non-pruned HeatViT [2] and
focus on MXInt datapath optimization.

TABLE VI: Area saving in LUT entries and accuracy loss by
our approximation techniques. The LUT entries are reduced by
at least 16×. The bitwidths are determined by greedy search.

Operation Approach LUT
entry bits

Accuracy loss in %

DeiT Tiny DeiT Small DeiT Base

Float32 - 79.83 72.13 81.80

GELU vanilla LUT 14 0.03 0.04 0.01
Our work 5 0 0.07 0.06

Softmax vanilla LUT 16 0.01 0 0.03
Our work 2 0.03 0.02 0.03

LayerNorm vanilla LUT 13 0.11 0.14 0.06
Our work 5 0.55 0.43 0.08

1) Bitwidth Saving Evaluation: We first discuss the ef-
fectiveness of our work based on model accuracy. Table V
shows the model accuracy over a set of quantization ap-
proaches. As mentioned before, we focus on PTQ results to
ensure fairness, as different approaches may have their own
fine-tuning optimizations. In the table, integer quantization
struggles to preserve high accuracy with smaller bits. This
is because the numerical variance between tensor elements is
huge and requires a large range to be represented. On the other
hand, both the standard floating-point format and the MXInt
format have an exponent to scale these values, leading to a
large dynamic range. With the same bitwidth, MXInt shows
better accuracy compared to Float8 because it has five more
mantissa bits at the price of sharing the exponent. We apply a
greedy quantization search and determine the minimal bitwidth
required for lossless quantization in each ViT model, as shown
in the table. The final precision is used for hardware mapping
in Table VII. Finally, it can also be seen that larger models
tend to have better tolerance to low-bit quantization, which
suggests our approach will be more effective as we expect
future model sizes will continue to increase. Also, the PTQ
results avoid GPU time on retraining, making our quantization
approach more applicable when training resources are limited.

The evaluation of our datapath optimization on non-linear
operations at the system level is shown in Table VI. In the
table, it can be seen that a significant number of entries are
saved by our datapath optimizations, where reducing a bit
leads to half of the LUT size. Besides high area efficiency,
our approximation techniques preserve high model accuracy,
and the accuracy loss is negligible.

2) System Performance Evaluation: We also compared our
work with the corresponding floating-point implementation
Figure 10. The red bars represent the same architecture in
Float8, the green bars represent our work without and with
inter-layer pipelining, respectively. We chose Float8 rather
than Float32 as our baseline because the 8-bit floating-point
format has a similar bitwidth to our MXInt format, leading
to a fair comparison. We compare our work with the same
architecture in Float8 to show the effectiveness of MXInt
mapping. The independent exponent operators in Float8 lead
to significant overhead in both area and memory size, which
limits the design space for data parallelism and inter-layer



TABLE VII: Comparing our work with related work on ViT accelerators is unfair due to the differences in hardware
microarchitectures (e.g. systolic arrays and dataflow circuits) and algorithm optimizations (e.g. fine-tuning and PTQ). In this
work, we focus on MXInt datapath optimization and only report our system results of MXInt ViTs to be self-contained.

Models Methods Platforms Hardware resources Performance

kLUTs % DSPs % BRAM % URAM % Power (W) Fmax (MHz) GOPs/s FPS FPS/W

DeiT Tiny
[9] ZCU102 144 52.7 1268 50.3 - - - - - 300 616.10 245.28 -
HeatViT [2] ZCU102 116 42 1739 69 289 32 - - 8.01 150 197.86 78.30 9.77
Ours U250 1163 67 24 0.2 330 12 529 41 40.08 183 1488.34 589.44 14.71

DeiT Small

[9] ZCU102 144 52.7 1268 50.3 - - - - - 300 762.70 89.69 -
HeatViT [2] ZCU102 130 48 1754 70 493 54 - - 10.10 150 239.81 25.90 2.57
Auto-ViT-Acc [3] ZCU102 185 67 1552 62 - - - - 9.63 150 907.80 99.70 10.35
Ours U250 860 50 12 0.1 1476 55 820 64 28.37 192 2861.03 309.21 10.89

DeiT Base
HeatViT [2] ZCU102 145 53 1786 71 664 73 - - 11.04 150 395.80 11.20 1.01
Auto-ViT-Acc [3] ZCU102 186 68 1556 62 - - - - 9.31 150 1181.50 34.00 3.65
Ours U250 744 43 8 0.1 497 18 1089 85 25.25 179 2332.37 66.06 2.61

pipelining. The latency is significantly worse than that of the
MXInt design in the green bars. Our approach achieves at least
a 93× speedup by translating Float8 operators into efficient
MXInt hardware in a lossless form. Still, the speedup for large
models is restricted by the available hardware resources on the
FPGA and can be further exploited in larger FPGAs such as
the V80 device [27].

3) Discussion on Limitations: We include related work on
ViT accelerators in Table VII with our work. The related work
cannot be directly compared to our results due to two main
reasons. First, they map part of their models on the CPU, while
we map the whole models on the fabric, leading to different
energy efficiencies. Second, they fine-tune the model using
different software optimization techniques, while we focus on
datapath optimization without fine-tuning. Our quantization
results offer a lower bound for our approach and can be
significantly improved with fine-tuning.

In the table, existing work focuses on fixed-point quantiza-
tion and acceleration. Their fixed-point operators fully exploit
existing DSP blocks for acceleration, as the DSPs are hardened
on-chip and amenable to efficient fixed-point/floating-point
multiplication and addition. In our work, the DSP blocks are
significantly underutilized as we focus on general datapath
optimization for both ASIC and FPGA designs. The proposed
accelerator is bounded by the LUT resources as most of the
operators are mapped into LUTs. Efficient logic synthesis for
MXInt operators to FPGA-specific IPs, such as DSP blocks,
is outside our scope but is key future work, where our work
provides an initial baseline.

V. RELATED WORK

Microscaling Quantization: Sharing certain components for
a block of values has been widely recognized as the state-
of-the-art technique for quantizing CNNs [28], [29]. Fur-
ther explorations within this line of research have investi-
gated grouping numbers at various granularities, including
layer-wise [30], channel-wise [31], and vector-wise quantiza-
tion [32]. In addition, many block floating-point variants [33],
[32], [6] have been proposed, with the core idea of grouping
values into multiple blocks and elements within each block
sharing common digits. The closest piece related to our work

is by Darvish et al. [6] that proposes MXInt quantization for
DNN accelerators. This work is later extended to multi-level
MX quantization, also known as MXFP, where the shared
component can be non-integers [34]. They focus on MXInt
quantization and overlook hardware optimization, while our
work proposes MXInt-specific datapath optimization with de-
sign space exploration.

Quantized Transformer Accelerators: Quantization for ef-
ficient ML inference on accelerators has been widely stud-
ied [35], [36], [37], [38], especially using fixed-point num-
bers [39], [40], [41], [42], [43], [44]. Other work customizes
hardware architectures for efficient inference [45], [46], [47],
[48], [49], [50]. GOBO [51] and EdgeBERT [52] exploit
software and hardware co-designs for accelerating transform-
ers. FACT [53] and FlightLLM [1] exploit mixed-precision
quantization using fixed-point numbers on linear layers. They
only exploit quantization with fixed-point numbers, while we
target MXInt quantization.

In the domain of ViT accelerators, existing work focuses
on fixed-point quantization [3], [2], [9], while we propose
MXInt quantization with hardware optimizations. They only
accelerate part of the models on the FPGA, while our hardware
accelerator computes the complete workload of the model.

VI. CONCLUSIONS

In this work, we propose fully hardware-accelerated ViTs
in MXInt and customize hardware datapath optimization for
MXInt operators. We explore the tradeoff between model
accuracy and area efficiency of the MXInt hardware operators
and determine a balance for efficient acceleration. Given the
block sharing property of the MXInt format, our proposed
datapath optimization techniques further tailor operators with
complex circuitry to efficient LUTs. Our optimization realizes
all operations mapped to efficient hardware on the fabric
and has shown significant improvements compared to vanilla
floating-point designs.
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