
Formal Methods in Computer-Aided Design 2025

Unlocking Hardware Verification
with Oracle Guided Synthesis

Leiqi Ye 1, Yixuan Li 1, Guy Frankel 1, Jianyi Cheng 1, Elizabeth Polgreen 1
1
University of Edinburgh, UK

{leiqi.ye, yixuan.li.cs, G.Frankel-1, jianyi.cheng, elizabeth.polgreen}@ed.ac.uk

Abstract—Hardware verification is essential to en-

sure that hardware designs meet their design specifica-

tions and function as intended. However, use of formal

verification requires extensive manual work in order to

write formal specifications. Specification mining aims

to alleviate this manual burden, with conventional tech-

niques using statistical methods and pattern matching

to generate likely specifications from sample execution

traces from the hardware. A limitation of this is that the

quality of the specifications is determined by the quality

of the traces. In this paper, we present an approach

that uses oracle-guided synthesis to generate specifica-

tions for hardware, using counterexamples and negative

examples to refine specifications generated based on

traces. We evaluate our approach on real-world Ver-

ilog benchmarks and demonstrate that specifications

generated by our tool can detect high proportions of

hardware mutations.

I. Introduction

Hardware verification ensures that a hardware design
meets its specification(s) and functions correctly by identi-
fying design flaws before manufacturing. Traditional hard-
ware verification can either be done through simulation or
formal verification. Simulation tests a design on a set of
predefined test cases, potentially missing corner cases that
may cause errors; whereas formal verification captures all
possible cases under a set of specifications given by the
designer. Formal verification is widely used in hardware
verification today due to its better coverage, because a
single undetected bug can necessitate a redesign and re-
fabrication, incurring millions of dollars in losses.

However, a major challenge in hardware formal verifi-
cation is writing formal specifications for a given hard-
ware design. Manually writing specifications is time-
consuming, usually taking up to 60%-70% of the devel-
opment time [40], and requires significant expertise due to
the complexity of both hardware design and its require-
ments [18], [39]. As a result, there is substantial interest
in automatically generating specifications from arbitrary
hardware designs. This process is usually referred to as
specification mining [4], [31], [32], and has been applied
to software and hardware. Most specification mining al-
gorithms are passive and based on inferring specifications
using pattern matching on traces passively collected from
a system. These approaches rely on the set of traces being
su!ciently comprehensive to capture the behavior of the

model, and need carefully designed property templates to
avoid overfitting to the traces.

In this paper, we present Specification Mining of
Assertions, Refined via Traces (SMART): a specification
mining method for hardware designs based on oracle-
guided inductive synthesis. Our synthesis process is based
on 3 types of examples: we collect simulation traces from
the hardware design, which we convert into positive ex-

amples, we use a model checker to generate unreachable
states, which are treated as negative examples, and once
the synthesizer has proposed a candidate assertion, we use
a model checker to generate counterexamples if the asser-
tion does not fully capture the behavior of the hardware.

We evaluate our approach on Verilog benchmarks from
the literature and assess the specifications generated by
our approach by mutating the hardware benchmark under
test. A specification that can di"erentiate between the
original design and a high number of mutant hardware de-
signs is likely to be a meaningful specification. Assertions
generated by SMART can di"erentiate a high proportion
of mutants, achieving a 100% mutation detection rate on
several real-world benchmarks. In comparison to related
work, our approach infers meaningful specifications with-
out requiring custom templates or carefully provided trace
sets and provides formal guarantees that the specifications
hold.

II. Motivating Example

Figure 1a shows a digital circuit that determines the
maximum value among three 8-bit inputs. The circuit
compares the values between the first two inputs a and
b and passes the larger value for the next comparison,
annotated as d. The result is then compared with the
third input, where the maximal value is determined and
sent to the output result. The corresponding source that
generates the digital circuit is shown in Figure 1b, de-
scribed in Verilog, a hardware description language (HDL)
for digital circuits [43]. The Verilog source contains three
main components: IO declaration, hardware description,
and property assertion. First, both the three inputs and
the output of the digital circuit are specified in lines 4-
7 in eight bits. Second, lines 9-13 describe the design of
the circuit in Figure 1a using two conditional assignments.
Finally, lines 15-19 describe the invariants of the digital
circuit design, also known as design specifications.

https://doi.org/
This article is licensed under a Creative
Commons Attribution 4.0 International
License

https://fmcad.org/FMCAD25
https://orcid.org/0009-0006-6026-4632
https://orcid.org/0009-0007-4619-3476
https://orcid.org/0000-0001-5809-3455
https://orcid.org/0000-0003-2791-2555
https://orcid.org/https://orcid.org/0000-0001-9032-7661
https://doi.org/
https://doi.org/
https://creativecommons.org/licenses/by/4.0/

a b c

result

d

mux

mux

comp

comp 8 8 8

8 8

1

1

(a) A digital circuit that

determines the maximal

value among three 8-bit

inputs. comp = compara-

tor, and mux = multi-

plexer.

1 // Return the max value
2 // of three inputs .
3 module max3(
4 input [7:0] a,
5 input [7:0] b,
6 input [7:0] c,
7 output [7:0] result
8);
9 wire [7:0] d;

10 // d = max(a, b)
11 assign d = (a >=b) ? a:b;
12 // result = max(d, c)
13 assign result = (d >=c) ?

d:c;
14
15 // assertions
16 assert property
17 (a <= result);
18 assert property
19 (d <= result);
20 endmodule

(b) The Verilog and SVA source

for the digital circuit.

Fig. 1: A motivating example. Existing work [21] only
supports boolean circuits and cannot automatically gen-
erate SVAs for the example above. SMART automatically
generates e!cient SVAs for formal verification.

The first two parts form a design description that can
be directly mapped to a digital circuit. Descriptions of
real-world hardware designs are often more complex and
finer-grained, down to the bit level, leading to a high risk
of introducing design bugs. For example, the “>” character
at line 13 may be mistakenly typed as “<”, leading to a
syntactically correct but functionally incorrect condition
a <= b. Such design bugs could be captured by hardware
verification using design invariants. The invariants for
Verilog designs are described in a property specification
language named SystemVerilog Assertions (SVA) [44], as
defined in Section III-A. In verification, the circuit behav-
ior is formally verified to match each SVA under any input
values. The invariants on lines 15-19 of Figure 1b would
fail if the circuit contained the previously described bug.

Still, existing approaches in hardware verification for
a given Verilog design require human e"ort. A key chal-
lenge in automatically generating such specifications is the
unique semantics of hardware description languages like
Verilog compared to traditional software programs. Tra-
ditional static analysis techniques on software programs
cannot be directly applied to digital circuit descriptions.
For example, re-ordering statements in Verilog, such as
swapping lines 11 and 13 in Figure 1b, does not a"ect the
correctness of the output, while this usually causes errors
in software programs that follow sequential execution. The
analysis process could become more challenging when the
digital design is implemented with complex obfuscation for
security reasons [8].

Existing work uses customized static analysis to infer
SVA [21]. However, it focuses on a small set of Verilog
designs and only works under stringent constraints. For

example, the hardware design must be described as a
boolean circuit, while modern hardware designs contain
wires of multiple bits. We seek a general approach for
automated SVA generation.

This example also illustrates a key limitation of
template-based assertion mining tools: they often rely on
fixed syntactic forms or single-variable patterns. In con-
trast, the assertions shown in Figure 1(b), such as assert
property (a <= result); and assert property (d <=
result);, involve multiple variables and relational rea-
soning across signal dependencies. These kinds of com-
pound assertions fall outside the expressiveness of common
pattern-based templates. SMART, by framing assertion
generation as a formal synthesis problem, is able to au-
tomatically infer such expressive multi-variable properties
without relying on pre-defined templates.

The SVAs should precisely describe the hardware behav-
iors with minimal tolerance for design discrepancies. We
formalize the hardware verification problem into a formal
synthesis problem and leverage existing program synthesis
tools for the automated generation of e!cient SVAs. In the
rest of the paper, we will describe our approach in detail.

III. Background

A. Verilog and SystemVerilog Assertions (SVAs)

Verilog is an HDL used to describe digital electronic
systems. It has been widely used in digital system design
and verification at register-transfer level (RTL). Compared
to traditional software programming languages, such as
C or Python, which describe the sequential execution
of instructions, Verilog is tailored to describe parallel
hardware behavior.

Most HDLs, including Verilog, provide two main pro-
gramming styles for describing hardware designs: struc-
tural and behavioral descriptions. A structural description
presents a circuit at a low level, specifying how individual
components, such as gates, multiplexers, or registers, are
interconnected. A behavioral description is used for high-
level descriptions of hardware behaviors, focusing on what
the circuit should do rather than how it is implemented.
To maximize generality and avoid targeting particular use
cases, our work supports both structural and behavioral
Verilog inputs.

On the verification side, SVAs are used as an extension
of the Verilog language for formal verification. Unlike
traditional run-time assertions that are evaluated during
simulation and are limited to runtime checking, SVAs
specify properties that must always hold true, and can
be checked with formal verification, to ensure that the
implemented design meets its design specifications. In
this work, we take Verilog and its SVA generation, as
the example, to show how program synthesis can guide
automated hardware verification. Our method is general
and can be applied to other HDLs, for example VHDL [5]
and its own Property Specification Logic [13].

Verilog
design

Verilog
testbench

Verilog
simulator

Simulation
traces

Verilog
analyzer

Register
variable sets

Formal
synthesizer

Synthesized
expressions

Assertion
generator

Verilog
assertions

Model checker

Verified
SVAs

Counter
examples (if an assertion fails)

1

2 4 5 6

7
Assertion
analyzer

Output
AssertionsUser Inputs

Negative
state maker 3 Negative

states

(a) Overview of SMART. Our contributions are highlighted.

1 (set-logic BV)
2 (synth-fun inv ((d (_ BitVec 8))
3 (result (_ BitVec 8))) Bool)
4 ; Constraints from the simulation trace:
5 (constraint (= (inv #142 #148) true))
6 (constraint (= (inv #172 #179) true))
7 ; Constraints from negative states:
8 (constraint (= (inv #111 #2) false))
9 (check-synth)

(b) A simplified example of a synthesis con-

jecture generated from simulation traces and

negative states. It reasons about the variables

d and result in the circuit in Figure 1.

Fig. 2: The SMART tool workflow and SyGuS example for invariant synthesis.

B. Syntax-Guided Synthesis (SyGuS)

SyGuS is a formal framework for program synthesis,
which automatically generates programs that satisfy a
given specification. We frame the problem of generating
assertions as a SyGuS problem.

A SyGuS problem has a closed formula of the form
→F.↑xω .ε, where F is a function to be synthesized, xω is
a list of universally quantified variables, and ε is a first-
order formula in a background theory T which specifies
the semantic correctness constraints for F . The synthesis
function F has a corresponding grammar, G. A valid
solution to a SyGuS formula is a function f such that
↑x.ε[F ↓↔ f] is T -satisfiable and f ↗ L(G), where L(G)
denotes the language defined by G.
C. Oracle Guided Inductive Synthesis

SyGuS problems are solved by Oracle-Guided Inductive
Synthesis algorithms (OGIS) [25]. Given a SyGuS problem
as described above, OGIS alternates between a learner,
which guesses or enumerates through candidate programs
in G, and an oracle that the learner may query to check
if the candidate program satisfies the specification, or to
obtain feedback if it does not. The most common variant
of OGIS is CounterExample Guided Inductive Synthe-
sis(CEGIS) [41], where the learner proposes a candidate
program f

→ to the oracle. If the candidate program fails
to satisfy the specification, i.e., →x.¬ε[F ↓↔ f

→], the
oracle returns a counterexample, which is an assignment
to x [41]. The learner stores a set of counterexamples C,
and then searches for a new candidate function such that
↑x ↗ C.ε[F ↓↔ f] is T -satisfiable.

However, other oracles, which provide other forms of
guidance, are sometimes used. Prior work in invariant
synthesis [16] uses oracles that provide positive examples
(on which the invariant should evaluate to true) and
negative examples (on which the invariant should evaluate
to false) to guide the search.

IV. Overview

A. Problem Statement

Given a hardware design, we wish to find a set of asser-
tions that are valid (i.e., never violated by the hardware

design). We frame this as a formal synthesis problem.
First, let us define what we mean by hardware design.

Definition 1: A hardware design H is a tuple
↘VH , I, S, s0, T ≃

• where VH is a set of m state variables.
• Vi ⇐ VH is a set of input variables, i.e., variables that

can be assigned to by an external source.
• S is a set of states, where each state corresponds to a

full assignment to all variables in VH , i.e., s ↗ S and
s = {v1 ↓↔ c1, . . . vm ↓↔ cm} where VH = {v1, . . . vm}

and c1, . . . , cm are constant literals.
• I ⇐ S is a set of initial states.
• T ⇐ S⇒S is a predicate that defines the set of possible

transitions between states.
A valid assertion or specification is a predicate over the
state variables that is true for all reachable states, i.e., it
is never violated by any execution of H. We define this
formally as follows:

Definition 2: A sequence ϑ of states s0, . . . sn is an
execution in H if, for each 0 ⇑ i ⇑ n, ↘si, si+1≃ ↗ T . A
state s ↗ S is reachable if there is a trace s0, . . . s, where
s0 ↗ I, i.e., if there is a path from an initial state to s.

Definition 3: An assertion ϖ ⇐ S is a predicate over (a
subset of) the variables VH . We use ϖ(s) to indicate the
result of evaluating the predicate ϖ over the assignment
to the state variables given by s. An assertion thus defines
a set of states Sω = {s | ϖ(s) = ⇓}. An assertion ϖ holds

if and only if Sω ⇐ R, where R is the set of all reachable
states. If ϖ holds, we say that H |= ϖ.
We note that the generated specifications should also be
meaningful: they should not be vacuously true, and they
should be compact and more readable than the hard-
ware model itself. We evaluate our specifications against
these criteria using mutation detection, described in Sec-
tion VII-A2.

a) Formal Problem Statement: Formally, given a
hardware design H (see Definition 1), we wish to generate
a set of assertions ϖ1, . . . , ϖn such that H |= (ϖ1 ⇔ . . . ⇔

ϖn). Thus, the synthesis conjecture we wish to solve is
→ϖ1, . . . ϖn.↑VH .ε. The terms are defined as follows.

• ϖ1 . . . ϖn are the assertions to be synthesized.

• VH is the set of variables in H.
• ε is the specification, which should state that H |=

(ϖ1 ⇔ . . . ⇔ ϖn).
We also provide a grammar for ϖ1, . . . , ϖn, which serves
to reduce overfitting as well as reduce the search space of
possible assertions.

B. Proposed SMART Framework

We will explain how we use synthesis from positive
and negative examples to overcome the above challenges.
Specifically, Section V describes how we collect simulation
traces from H and use these to construct the grammar,
and Section VI describes the construction of our oracle-
guided synthesizer. An overview of the SMART framework
is illustrated in Figure 2a:

1↖ A lightweight static analyzer parses the Verilog
design to identify the key variables (register vari-
able sets in the figure) used to construct grammars
for the syntax-guided synthesis, described in Sec-
tion V-B;

2↖ For given user inputs, a hardware simulator gener-
ates a set of simulation traces as positive examples,
described in Section V-A;

3↖- 5↖ A random search is called with a hardware model
checker to find unreachable states in the hardware
design, known as negative examples, which are used
to construct a synthesis conjecture, shown in Fig-
ure 2b together with the simulation traces and
variables for an oracle-guided program synthesizer,
leading to synthesized assertions that satisfy the
synthesis conjecture and are later translated to
syntactically correct SVAs, described in Section VI;

6↖ The assertions are checked against the hardware
using an unbound model checker, resulting in either
verification success (passing assertions to the out-
put) or failure with counterexamples (refining the
synthesis conjecture to produce more assertions),
described in Section VI-C;

7↖ The verified assertions are analyzed to refine the
variable set used to generate the grammar, ac-
celerating the mining process, described in Sec-
tion VI-D.

V. Trace Collection & Grammar Construction

The core idea behind SMART is to use formal synthesis
to generate specifications for hardware designs. The inputs
to our formal synthesis are a set of variables to be used
in the specification, as well as a set of positive examples,
negative examples, and counterexamples. In this section,
we describe how we obtain the variable set, the positive
examples, and the negative examples.

A. Verilog Simulation

Here, we explain how we obtain positive examples
through simulation traces obtained from the Verilog simu-
lator. We assume that a hardware design H comes with a

corresponding hardware testbench. A hardware testbench
is a simulation environment, used with a simulator to test
the states of a hardware design by simulation. Di"erent
values are fed into the inputs Vi of the hardware design at
di"erent time steps, and the outputs are checked to detect
potential discrepancies compared to given expectations.
This leads to a simulation trace for each test run. A
simulation trace contains a subset of internal wire variables
VH and records their states over a sequence of time stamps.
For example, a trace may include an event where both a
and result increase from 8 to 10 while b and c are both
5 at the time stamp 50 nanoseconds after the start of the
simulation.

Each simulation trace is translated into an execution
trace (see Definition 2).

B. Identifying the Variable Sets: Verilog Analysis

Formal synthesis in general relies on enumerating the
space of programs, leading to a space growing exponen-
tially with the number of variables. To reduce this prob-
lem, SMART uses heuristics to select only random subsets
of variables for assertion synthesis. We use a lightweight
analysis of the simulation trace and Verilog code to extract
the register variables that only change values with clock
edges. We experimented with heuristic-based selection
strategies – variable dependency analysis, which attempts
to select semantically related variables. However, empirical
evaluation showed the method provides limited benefit in
our setting.

Specifically, we identify the register variables from the
hardware, denoted VH . For a given trace ϑ, we define a
corresponding set of trace variables Vε to be the set of
variables that change at some point during the trace. We
use st(vi) to indicate the value assigned to variable vi at
time step st in one trace. That is Vε = {v ↗ VH |→si, si+1 ↗

ϑ ⇔ si(v) ↙= si+1(v)}. Given a collection ! of traces, let
V! =

)︄
ε↑! Vε be the union of all trace variables

appearing in !. This ensures we consider only variables
that feature in the trace and are also in the Verilog design,
i.e., variables introduced by the simulator and parameters
defined but never used in the design are never considered.

SMART adopts a randomized variable subset selection
strategy. We randomly sample a small subset of variables
Vi ∝ V! These variable sets are updated at each itera-
tion of SMART. Suppose ϖ is synthesized from a subset
Vi ↗ V; Once ϖ is produced, the assertion analyzer updates
Vi ′ Vi \ var(ϖ), where var(ϖ) returns the variables used
in ϖ. This avoids reusing those same variables in future
assertions. SMART continues this process, reducing the
size of the variable set Vi in each iteration until either
Vi = ∞, or the synthesis problem is infeasible with the
remaining variables, or a generated assertion is discovered
to be invalid via formal verification. Once one of these
conditions is satisfied, SMART moves on to considering

Vi+1. The size of the initial subset is determined by the
total number of variables in V!, that is:

|Vi| =

[︄
]︄]︄]︄]︄⌊︄

]︄]︄]︄]︄⌋︄

|V!| ∈ 1, if |V!| ⇑ 5

5, if 5 < |V!| ⇑ 400,

20, if 400 < |V!|,

where |V | indicates the number of variables in the set V .
This ensures the extracted variables e!ciently capture key
hardware states, leading to more meaningful assertions.

VI. Oracle-Guided Synthesizer

In this section, we describe our Oracle Guided Inductive
Synthesis approach to generating SVA assertions, as shown
in Algorithm 1.

A. Constructing the Grammar G

The first step of the synthesis is to generate a grammar
for the synthesis problem. Given a variable set V and
a background theory, SMART constructs the following
grammar:

Bool ::=Bool ∋ Bool | ¬Bool | Bool ⇔ Bool |

Bool △ Bool | any boolean v in V

Bv ∋ Bv | Bv ▽ Bv | Bv ⇑ Bv | ̸

Bv < Bv | Bv > Bv | Bv ▽u Bv | ̸

Bv ⇑u Bv | Bv <u Bv | Bv >u Bv ̸

Bv ::= ∈ Bv |↦ Bv | Bv & Bv | Bv ∀ Bv | Bv + Bv | ̸

Bv ∈ Bv | Bv ̸ Bv | any bitvector v in V ̸

∀ denotes bitwise OR, and & denotes bitwise AND opera-
tion. Xu is the unsigned version of the comparator X, e.g.,
<u indicating an unsigned <. ∋ denotes equality, and =
denotes assignment. SMART omits lines marked ̸ if there
are no bitvector variables in V .

B. Positive and Negative Examples

Recall that our specification ε for our synthesis problem
for synthesizing A = ϖ1 . . . ϖn is that H |= A. It is infea-
sible to give this specification to an o"-the-shelf SyGuS
solver, which implements CEGIS, because encoding the
formula H |= A requires unwinding the transition system
of H and su"ers from the classic model-checking state-
space explosion problem [11]. Instead, we construct an
OGIS loop based on using positive and negative examples,
combined with counterexamples.

A positive example s
+ is a reachable state in H. The

hardware H |= ϖ if and only if ϖ(s+) = ⇓.
A negative example s

↓ is an unreachable state in H. We
use negative examples to refine the assertions, and thus we
require that ϖ(s↓) = ∃.

We generate a set of positive examples, P from the
simulation traces. For every step in a trace ϑ = s0, s1 . . .,
we generate a single positive example. In order to generate

Algorithm 1 Oracle Guided Inductive Synthesis
1: procedure OGIS(H, P, N , V)
2: A → ↑, i → 0
3: V → V, G → GenerateGrammar(V)
4: while true do
5: ω → Enumerate(G, P, N)
6: if verify(ω, H) then
7: A → A ↓ ω

8: V → V \ var(ω)
9: if V = ↑ then

10: i → i + 1
11: V → V
12: G → GenerateGrammar(V)
13: end if
14: else
15: c → verify.get_cex

16: P → P ↓ {c}
17: i → i + 1
18: if i = |V| then return A ε No more variable sets
19: end if
20: V → V
21: G → GenerateGrammar(V)
22: end if
23: end while
24: end procedure

negative examples, we randomly generate assignments to
the state variables. This gives us a random state s. We
then check whether s ↗ R using a model checker with
k-induction. If s is not reachable, we add it to a set of
negative examples N .

Given a set of positive and negative examples, SMART
uses program synthesis to synthesize an assertion that
evaluates to true for the positive examples and false for
the negative examples. That is, it solves the synthesis
conjecture →ϖ(↑s ↗ P. ϖ(s) = ⇓ ⇔ ↑s ↗ N . ϖ(s) = ∃).
We use an o"-the-shelf enumerator built into cvc5 [6] to
determine ϖ. Given ϖ, SMART applies simple syntactic
translation rules to translate the assertions to syntactically
correct SVAs for verification.

In our implementation, we generate one negative exam-
ple per iteration. This is based on our observation that
a single unreachable state is often su!cient to eliminate
trivial or vacuously true assertions during synthesis. Using
only one example keeps the synthesis problem small and
improves solver performance. This design choice strikes a
balance between counterexample strength and synthesis
tractability, and we found in practice that increasing the
number of negative examples per iteration did not sig-
nificantly improve assertion quality or mutation detection
rate.

C. Counterexamples

The generated SVAs are verified against H using the
same model checker as the negative example generation,
using k-induction [38]. We use H ↙|= ϖ to indicate that the
hardware model H violated the assertion ϖ, and H |= ϖ

to indicate that H did not violate the assertion.
If H ↙|= ϖ, the verifier provides a counterexample trace

ϑcex = s0s1 . . . sk where ϖ(sk) = ∃. All states in ϑcex

ar
b2

m
ul

td
iv

de
co

de
r

co
nt

ro
lle

r
c1

7
s2

7
s2

98
s3

44
s3

49
s3

82
s3

86
s4

00
s4

20
c4

32
s4

44
c4

99
s5

10
s6

41
s7

13
s8

20
s8

32
s8

38
c8

80
s9

53
s1

23
8

c1
35

5
s1

48
8

c2
67

0
c3

54
0

s5
37

8
c6

28
8

c7
55

2
s9

23
4

s1
32

07
s1

58
50

s3
59

32
s3

84
17

s3
85

84

30
60

100
V

C
(%

)
GoldMine [21] HARM [17] SMART

Fig. 3: Verification Correctness (VC) rates of di"erent approaches over various benchmarks.

ar
b2

m
ul

td
iv

de
co

de
r

co
nt

ro
lle

r
c1

7
s2

7
s2

98
s3

44
s3

49
s3

82
s3

86
s4

00
s4

20
c4

32
s4

44
c4

99
s5

10
s6

41
s7

13
s8

20
s8

32
s8

38
c8

80
s9

53
s1

23
8

c1
35

5
s1

48
8

c2
67

0
c3

54
0

s5
37

8
c6

28
8

c7
55

2
s9

23
4

s1
32

07
s1

58
50

s3
59

32
s3

84
17

s3
85

84

30
60

100

M
D

(%
)

GoldMine [21] HARM [17] SMART

Fig. 4: Mutation detection (MD) rates of di"erent approaches over various benchmarks.

ar
b2

m
ul

td
iv

de
co

de
r

co
nt

ro
lle

r
c1

7
s2

7
s2

98
s3

44
s3

49
s3

82
s3

86
s4

00
s4

20
c4

32
s4

44
c4

99
s5

10
s6

41
s7

13
s8

20
s8

32
s8

38
c8

80
s9

53
s1

23
8

c1
35

5
s1

48
8

c2
67

0
c3

54
0

s5
37

8
c6

28
8

c7
55

2
s9

23
4

s1
32

07
s1

58
50

s3
59

32
s3

84
17

s3
85

84

30
60

100

M
D

(%
)

SMART SMART without counterexample refinement

Fig. 5: Impact of Counterexamples on SMART’s Mutation Detection Performance.

are, by definition, reachable, and so an ϖ such that H |=
ϖ should evaluate to true on any state in ϑcex. SMART
adds all states in the counterexample to the set of positive
examples.

In practice, counterexamples are frequently generated
during the synthesis process, especially in early itera-
tions where candidate assertions are often overly gen-
eral. These counterexamples play a critical role in refin-
ing the synthesized assertions by eliminating vacuously
true or weak predicates. We observe that incorporating
counterexamples significantly improves both the quality
and e"ectiveness of the final assertion set. The impact
of counterexample refinement is further discussed in the
section VII.

D. Assertion Analysis

If ϖ is valid, SMART adds it to the set of assertions A,
removes the variables in the assertion from the current
variable set, and repeats the synthesis process. If the
variable set is then empty, SMART moves on to the
next variable set. The assertion analyzer also removes

any syntactic duplicates. The iterative process terminates
either when |A| reaches a pre-defined limit, or we reach a
pre-defined time-out, or all variable sets are exhausted.

VII. Evaluation

We implement SMART, using cvc5 [6] version 1.2.0
to enumerate assertions, and EBMC [1] version 5.5 to
verify the correctness of the generated SVAs and as the
model checker that provides counterexamples inside the
synthesis process. We use Cocotb [37] as the Verilog
simulator. We use benchmarks from the related work [21]
and two standard low-level hardware benchmark sets,
ISCAS’85 and ISCAS’89 [2]. The benchmark set published
by GoldMine includes a set of realistic digital circuit
designs in behavioral Verilog: arb2, controller, decoder,
ld_stage and multdiv, taken from the existing Ibex
RISC-V CPU implementation [36]. There are also two
standard benchmarks to describe low-level digital circuit
designs. The ISCAS’85 benchmark [19] contains a set of
combinatorial circuits, which consist of logic gates only;
and the ISCAS’89 benchmark [7] which contains a set

of sequential circuits whose hardware behaviors depend
on clock signals. We evaluated SMART, HARM [17] and
GoldMine [21] over all the benchmarks that have available
Verilog sources. Result format converters are added into
the workflow of HARM and GoldMine to make their result
into SVA to run our evaluator. This is provided in the
artifacts.

A. Evaluation Metrics

We evaluate the quality of the generated specifications
by SMART based on the following two metrics:
1. Correctness: the inferred specifications should cor-
rectly describe the hardware behavior;
2. Meaningfulness: the specifications should di"erenti-
ate between the original design and a high number of
mutant hardware designs.
These are described in detail in the following sections.

1) Correctness of Assertion Sets: All assertions gener-
ated by SMART are correct with respect to the hardware
design, as verified by the model checker. As not all the
tools provided in related works use formal verification,
some assertions generated by these works do not hold on
the original model, i.e., H ↙|= A.

a) Formal Verification of SVAs: We verify all asser-
tions generated by the related work using k-induction.
For each assertion, we run it on the original hardware
model; if it passes verification, we keep it; otherwise,
we discard it. We then compute the verified correctness
rate, VC-rate, which measures the proportion of assertions
that correctly reflect the model. Suppose that Agen is the
set of generated assertions for one hardware design, and
Aver = {a ↗ Agen | H |= a} is the set of assertions that
pass verification. We calculate the VC-rate as |Aver|

|Agen| .
2) Meaningfulness of Assertion Sets: In order to assess

how meaningful our specifications are, we use mutation
tests, as is standard in the literature [23]. Intuitively, a
good specification should be one that can detect if we
change the underlying hardware design. To enable a fair
comparison with other tools when performing mutation
testing, we only perform testing on the assertions that pass
verification.

a) Mutant Generation: We use the mutation rules
from Repinski et al. [22], as shown in Figure 6. The left-
hand side indicates the operators to which a rule can be
applied, and the right-hand side indicates the result, for
example, rule rg1 replaces any gate operator with △. In
general, rules rg1 . . . rg8 are applicable to gate operators.
Rules rb1 . . . rb3 are applicable to bitwise operators. Rules
ra1, . . . ra5 are applicable to arithmetic operators. Rules
rr1 . . . rr6 are applicable to relational operators, and we use
∋ to indicate equality. The rule rneg negates any boolean
variable, and rran assigns a random value to any bitvector
literal.

We iterate over the Verilog file, and for each operator,
variable, and literal we encounter, we identify the set
of applicable rules. We then randomly choose one rule

(⇔ |¬|∅| ℜ | ℑ | ¬ | buf) rg1
∈∈↔ △

(△ |¬|∅| ℜ | ℑ | ¬ | buf) rg2
∈∈↔ ⇔

(△ | ⇔ |∅| ℜ | ℑ | ¬ | buf) rg3
∈∈↔¬

(△ | ⇔ |¬| ℜ | ℑ | ¬ | buf) rg4
∈∈↔∅

(△ | ⇔ |¬|∅| ℑ | ¬ | buf) rg5
∈∈↔ ℜ

(△ | ⇔ |¬|∅| ℜ | ¬ | buf) rg6
∈∈↔ ℑ

(△ | ⇔ |¬|∅| ℜ | ℑ | buf) rg7
∈∈↔ ¬

(△ | ⇔ |¬|∅| ℜ | ℑ | ¬) rg8
∈∈↔ buf

(∀ |
↔) rb1

∈∈↔ &
(& |

↔) rb2
∈∈↔ ∀

(& | ∀) rb3
∈∈↔

↔

bitvector literal rran
∈∈∈↔ random value

(∈ | ̸ | / | %) ra1
∈∈↔ +

(+ | ̸ | / | %) ra2
∈∈↔ ∈

(+ | ∈ | / | %) ra3
∈∈↔ ̸

(+ | ∈ | ̸ | %) ra4
∈∈↔ /

(+ | ∈ | ̸ | /) ra5
∈∈↔ %

(↙=|>|<|▽|⇑) rr1
∈∈↔∋

(∋|>|<|▽|⇑) rr2
∈∈↔↙=

(∋|↙=|<|▽|⇑) rr3
∈∈↔>

(∋|↙=|>|▽|⇑) rr4
∈∈↔<

(∋|↙=|>|<|⇑) rr5
∈∈↔▽

(∋|↙=|>|<|▽) rr6
∈∈↔⇑

bool rneg
∈∈∈↔ ¬bool

Fig. 6: Mutation rules. We use ¬, ∅, ℜ, ℑ to represent
NAND, NOR, XOR, and XNOR respectively. &, ∀, and
↔ represent bitwise AND, OR and XOR respectively. buf

indicates the Verilog operator buf, which transfers an input
to an output without changing polarity. This is thus
equivalent to removing an operator.

Algorithm 2 Generation of Hardware Mutants
1: procedure GenerateMutants(Verilog file F , Rules R)
2: Mutants → ↑
3: for op in F do ε Iterate over operators in file
4: Rapp → FindApplicableRules(R, op)
5: r → RandomSample(R)
6: F

→ → Mutate(F, op, r)
7: Mutants → F

→

8: end for
9: for boolean var v in F do

10: F
→ → Mutate(F, op, rneg)

11: Mutants → F
→

12: end for
13: for literals l in F do
14: F

→ → MutateNumeral(F, op)
15: Mutants → F

→

16: end for
17: return Mutants

18: end procedure

from this set, and apply it to generate a new mutant.
This generates a randomly chosen subset of all possible
mutations that can be generated by applying one mutation
rule to H. This is shown in Algorithm 2.

b) Mutant Detection: Given a hardware design H and
a conjunction of synthesized assertions A, we mutate H

using a pre-defined set of rewrite rules to generate a set
of hardware designs Hmut. A mutant H

↗ can be detected
by our set of assertions A if H |= A and H

↗
↙|= A. We

use k-induction, as implemented in EBMC, to determine
whether a mutant can be detected by a given assertion set.

We define the mutation detection rate to be:

MD-rate = |{H
↗
↗ H | H

↗
↙|= ϖ}|

|H|

TABLE I: Summary of results comparing SMART and related work. We report the average size of the generated
assertion set Agen, VC-rate and MD-rate across all benchmarks. The # column reports the number of benchmarks
supported by each approach.

Structural Verilog (34 benchmarks) Behavioral Verilog (4 benchmarks) All (38 benchmarks)
|Agen| VC-rate MD-rate # |Agen| VC-rate MD-rate # |Agen| VC-rate MD-rate

GoldMine 0 0 n/a 0.0% 4 38.8 100% 21.16% 4 38.8 100% 4.3%
HARM 34 60676 8.41% 21.39% 4 3655 8.6% 29.6% 38 54674 8.4% 22.25%
SMART 34 1069 100% 55.41% 4 47 100% 25.17% 38 943.5 100% 52.23%

B. Baselines

We compare SMART to two related works: HARM [17]
and GoldMine [21]. HARM is based on learning patterns
from simulation traces, and we run it with 10,000-cycle
random input traces. GoldMine combines static analysis
with decision-tree-based data mining for SVA generation
and uses the closed-source JasperGold tool to verify the
correctness of the generated assertions. We replace Jasper-
Gold with EBMC as the formal verification tool, and the
raw output from GoldMine is included in the benchmark
for comparison. Unfortunately, GoldMine only supports
behavioral Verilog. Both tools generate assertions in their
own formats. For HARM, we provide a translation tool to
convert its output into SVA. For GoldMine, we manually
process its raw data into SVA. The resulting SVAs from
both tools are evaluated using the metrics mentioned
above.

C. Results

Table I shows a summary of the evaluation results.
a) VC-rate: We run formal verification of the gener-

ated assertions by various approaches and report the VC-
rates in Figure 3. Overall, most of the assertions generated
by HARM failed the verification in EBMC with returned
counterexamples. This is because HARM infers the speci-
fications of designs purely from traces and validates them
using simulations, which could miss corner cases. The low
rate persists even with long traces: in our experiments,
HARM uses traces with a length of 10,000 cycles, which
is significantly longer than the traces used for the other
tools.

Both GoldMine and SMART always generate verified
assertions for benchmarks, leading to 100% VC rates, but
GoldMine only supports a fraction of the benchmarks (the
behavioral Verilog benchmarks).

b) MD-rate: The mutation detection results are sum-
marized in Figure 4. Overall, SMART achieves a higher
MD-rate than any related work on 32/38 benchmarks.
In the 4 behavioral Verilog benchmarks supported by
GoldMine, SMART produces comparable results, with
both achieving an average MD-rate around 25% using
a comparable number of assertions. In comparison to
HARM, across the whole benchmark set, SMART achieves
higher MD-rates on 33 of the benchmarks, with an average
MD-rate 2.62x higher than HARM.

The MD-rates achieved by SMART vary significantly
across benchmarks, reflecting the complexity and struc-
tural di"erences of the circuits. For small, medium, and
large benchmarks, we achieve a strong assertion-based
detection rate. However, in the case of extremely large
circuits, timeouts limit the number of generated assertions,
leading to a lower mutation detection rate.

Some benchmarks do not achieve a high mutation detec-
tion rate. For SMART, this may be because these bench-
marks require assertions that reason about multiple time
steps to di"erentiate between some mutations. However, it
is worth noting that some mutations may not change the
behavior of the underlying circuit, so a mutation detection
rate of 100% may not be possible on all benchmarks.

D. Readability

The readability of specifications is subjective. Here, we
discuss quantitative metrics that we use to approximate
how readable the assertion sets are.

First, we look at the size of the assertion sets produced.
The average assertion set size produced by SMART is
> 50⇒ smaller than the assertion sets produced by HARM.
The assertion sets produced by GoldMine are of compara-
ble size to SMART, on the limited supported benchmarks.

Second, we implement an approximate equivalence
checker to estimate the amount of redundancy in the
assertion sets. We use an approximation of equivalence as a
complete equivalence check of all assertions is intractable.
Specifically, we use a non-destructive rewrite system based
on equivalence graphs [45] to rewrite the set of assertions
returned by SMART and check whether any assertions
are equivalent. An example of the rewrite rules used is in
Appendix II. We find that, in all cases, the rewrite system
reduces the size of the assertion sets produced by SMART
by less than 3%, suggesting SMART assertion sets contain
relatively little redundancy.

E. Rewrite system

The rewriting system used to evaluate assertion redun-
dancy was done using an equivalence graph (e-graph). E-
graphs provide a constructive method to apply rewrite
rules to capture semantically equivalent terms. We use
egg[45] to generate an e-graph for the assertion sets of
each benchmark. We then test whether equivalences exist

TABLE II: Examples of boolean rewrite rules used in for
equivalence rewriting. The rewriting system consisted of
105 rules for bitvectors and 10 for booleans.

Pattern Transformation

a = ¬a ↔
a = b b = a

a & b b & a

a & (b & c) (a & b) & c

a || b b || a

a || (b || c) (a || b) || c

in the assertion sets, using rewrite rules from CVC5 [6],
Bitwuzla [33], and E-syn [9].

VIII. Evaluation Details

A. Behavioral vs. Structural Verilog

We observe that SMART achieves comparable verifi-
cation correctness (VC) rates on both behavioral and
structural Verilog benchmarks, but mutation detection
(MD) rates are generally higher for structural designs.
This di"erence can be attributed to three main factors:

1) Control/Data Path Complexity. Behavioral Ver-
ilog often encapsulates complex control and data
path logic using higher-level constructs (e.g., if,
case, always @(*)), making the synthesized asser-
tions less precise in targeting low-level signal inter-
actions. In contrast, structural Verilog exposes finer-
grained gates and flip-flops, enabling SMART to more
e"ectively synthesize assertions that tightly capture
actual hardware behavior.

2) Grammar and Variable Set Size. Structural de-
signs tend to contain more low-level signals (e.g., in-
ternal nets, intermediate registers), resulting in larger
variable sets and more expressive grammars. While
this increases synthesis cost, it also gives the synthe-
sizer more flexibility to discover strong invariants. In
behavioral designs, the variable space is often smaller
and more abstract, limiting synthesis diversity.

3) Signal Variability. We found that structural Verilog
exhibits more frequent value changes in simulation
traces due to its gate-level representation, leading to
richer positive example sets. This makes it easier for
SMART to distinguish between correct and mutated
designs. Behavioral designs, by contrast, often ab-
stract away low-level toggling, which may result in
sparser and less informative traces.

These di"erences explain why SMART achieves stronger
mutation detection on structural designs (average MD-rate
55.4%) compared to behavioral ones (25.17%)

B. E!ect of Counterexample Refinement

We conducted an ablation study to quantify the e"ect of
counterexample-based refinement in SMART. Specifically,
we disabled the counterexample refinement mechanism
described in Section VI-C, and re-ran the synthesis process
using the same set of benchmarks and initial parameters.

The results are summarized in Figure 5. Across all
benchmarks, removing refinement led to a consistent drop
in mutation detection (MD) rate. The average MD-rate
dropped from 63.1% to 32.1%, a 49% relative reduction. In
some cases (e.g., arb2, c1355, s13207), MD-rate dropped
to zero, indicating that the initial assertion was vacuously
true and not filtered out without refinement. Only a few
small circuits (e.g., s27, s349) showed minimal sensitivity
to refinement.

These results confirm that counterexample refinement
plays a critical role in eliminating weak or vacuous as-
sertions. Without it, SMART often converges on trivial
assertions that pass simulation but fail to distinguish
between correct and mutated designs.

C. Limitations

Currently, SMART generates assertions that reason
about a single time step, and is unable to capture behav-
iors that evolve over multiple cycles. Extending its synthe-
sis capability to temporal properties would be feasible, but
would increase the size of the variable sets that the synthe-
sis procedure needs to consider. Specifically, we would need
to introduce a copy of the original variable set for each
time step we wish to consider in the temporal property, so
a property reasoning over two time steps would duplicate
the variable set. This is why related work requires the user
to provide restrictive templates, which limit the temporal
operators used in temporal logic properties. SMART may
be complementary to this by providing predicates that can
be used within such templates.

The runtime of SMART is limited by verification time.
One possible optimization for SMART would be to ini-
tially use testing to discard assertions that can easily be
falsified with testing. However, ultimately, verification is
a necessary part of the SMART pipeline in order to allow
us to generate correct assertions.

IX. Related Work

Automated assertion generation is a critical area of
research for improving hardware verification. Developing
static program analysis for SVA generation is actively
being studied. GoldMine [21] combines static analysis
and decision-tree-based data mining for SVA generation,
supporting boolean circuits.

GoldMine’s inability to support structural Verilog stems
from its reliance on semantic analysis tailored to behav-
ioral Verilog. The analysis framework assumes high-level
constructs and control flow information typically found in
behavioral code. However, structural Verilog presents a flat
netlist-like representation, where connectivity is expressed
via gate and wire instances rather than procedural code.
Supporting structural Verilog would therefore require fun-
damentally di"erent semantic analysis techniques, such as
netlist-level reasoning, instance graph traversal, and low-
level dependency tracking—none of which are addressed
in GoldMine. As a result, extending GoldMine to handle

structural designs is non-trivial and would require substan-
tial redesign of its core algorithms. By contrast, SMART
supports both behavioral and structural Verilog inputs
uniformly, without requiring hand-crafted templates or
specific HDL constructs.

HARM [17] heavily leverages user-defined hints, which
are particularly challenging to define for structural Verilog.
The resulting properties are validated against simulation
traces. The closest piece of work to ours is ARTmine [23],
which focuses on temporal assertion generation by mining
patterns. GoldMine was extended by Liu et al. [30] to
support word-level properties, but still requires pre-defined
templates. SMART is the only tool that supports bitvec-
tors, does not require templates, and verifies the generated
assertions.

There has also been interest in relying on machine learn-
ing models to automatically generate SVAs. Exploiting
natural language processing models for automated SVA
generation has been widely studied [20], [28], [46], [29],
[15], [27], [35], [3]. There has also been interest in using
large language models (LLMs) for SVA mining [26], [34],
[42], [14]. However, all these approaches require natural
language specifications as inputs, while SMART automat-
ically produces SVAs from traces.

Adjacent research in temporal logic mining and reac-
tive synthesis also highlights the contrast with SMART.
UNDINE [12] mines security-critical temporal logic (LTL)
properties from RTL designs using typed event templates.
While it supports expressive temporal operators, it relies
on pre-defined templates and extensive trace preprocess-
ing. SMART avoids templates altogether and synthesizes
bit-precise safety assertions for both behavioral and struc-
tural Verilog.

Oracle-Guided Inductive Synthesis has been used for
deobfuscating low-level bit-code code [24]. Here, the user
must provide a library of components from which the
deobfuscation is constructed, and the low-level code must
be small enough that it can be reasoned about by a
satisfiability solver. The fact that many of our mutation
tests time-out demonstrates that the Verilog files we are
able to handle are beyond the scope of these symbolic
encoding-driven techniques.

The closest application of oracle-guided inductive syn-
thesis to ours is inductive invariant synthesis [16]. Spec-
ification mining is related to but distinct from inductive
invariant synthesis, where the user provides a target prop-
erty, and an algorithm is used to infer an invariant that
can be used to construct a proof-by-induction to show the
target property holds. Unlike SMART, without a target
property, the approaches in the literature for inductive
invariant synthesis would not be able to infer an invariant.

A synthesis framework integrating reactive synthesis
with SyGuS has been proposed [10], using Temporal
Stream Logic modulo theories (TSL-MT) to generate
control/data-reactive programs. While both approaches
use SyGuS, SMART focuses on mining state-based as-

sertions from execution traces, rather than synthesizing
reactive strategies. As such, their synthesis goals and
application domains are fundamentally di"erent.

X. Conclusions

We have presented SMART: a novel approach for hard-
ware specification mining based on oracle-guided syn-
thesis. Our evaluation demonstrates that specifications
generated by SMART can di"erentiate more mutants on
real-world hardware verification benchmarks from the lit-
erature, using fewer assertions than the state of the art.

References

[1] Ebmc. https://github.com/di!blue/hw-cbmc/
[2] Circuit netlist benchmarks. https://sportlab.usc.edu/

~msabrishami/benchmarks.html (2025)
[3] Aditi, F., Hsiao, M.S.: Hybrid rule-based and machine learning

system for assertion generation from natural language specifi-
cations. In: 2022 IEEE 31st Asian Test Symposium (ATS). pp.
126–131. IEEE (2022)

[4] Ammons, G., Bodík, R., Larus, J.R.: Mining specifications. In:
POPL. pp. 4–16. ACM (2002)

[5] Ashenden, P.J.: The designer’s guide to VHDL. Morgan kauf-
mann (2010)

[6] Barbosa, H., Barrett, C.W., Brain, M., Kremer, G., Lachnitt,
H., Mann, M., Mohamed, A., Mohamed, M., Niemetz, A.,
Nötzli, A., Ozdemir, A., Preiner, M., Reynolds, A., Sheng,
Y., Tinelli, C., Zohar, Y.: cvc5: A versatile and industrial-
strength SMT solver. In: Fisman, D., Rosu, G. (eds.) Tools and
Algorithms for the Construction and Analysis of Systems - 28th
International Conference, TACAS 2022, Held as Part of the Eu-
ropean Joint Conferences on Theory and Practice of Software,
ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings,
Part I. Lecture Notes in Computer Science, vol. 13243, pp. 415–
442. Springer (2022). https://doi.org/10.1007/978-3-030-99524-
9_24, https://doi.org/10.1007/978-3-030-99524-9_24

[7] Brglez, F., Bryan, D., Kozminski, K.: Combinational profiles
of sequential benchmark circuits. In: 1989 IEEE International
Symposium on Circuits and Systems (ISCAS). pp. 1929–1934.
IEEE (1989)

[8] Chakraborty, R.S., Bhunia, S.: Hardware protection and
authentication through netlist level obfuscation. In: 2008
IEEE/ACM International Conference on Computer-Aided De-
sign. pp. 674–677. IEEE (2008)

[9] Chen, C., Hu, G., Zuo, D., Yu, C., Ma, Y., Zhang, H.: E-
syn: E-graph rewriting with technology-aware cost functions for
logic synthesis. In: Proceedings of the 61st ACM/IEEE Design
Automation Conference. pp. 1–6 (2024)

[10] Choi, W., Finkbeiner, B., Piskac, R., Santolucito, M.: Can
reactive synthesis and syntax-guided synthesis be friends? In:
Proceedings of the 43rd ACM SIGPLAN International Confer-
ence on Programming Language Design and Implementation.
pp. 556–571 (2022)

[11] Clarke, E.M.: Model checking - my 27-year quest to overcome
the state explosion problem. In: LPAR. Lecture Notes in Com-
puter Science, vol. 5330, p. 182. Springer (2008)

[12] Deutschbein, C., Sturton, C.: Mining security critical linear
temporal logic specifications for processors. In: 2018 19th Inter-
national Workshop on Microprocessor and SOC Test, Security
and Verification (MTV). pp. 13–18. IEEE (2018)

[13] Eisner, C., Fisman, D.: A practical introduction to PSL.
Springer Science & Business Media (2007)

[14] Fang, W., Li, M., Li, M., Yan, Z., Liu, S., Xie, Z., Zhang,
H.: Assertllm: Generating and evaluating hardware verifica-
tion assertions from design specifications via multi-llms (2024),
https://arxiv.org/abs/2402.00386

[15] Frederiksen, S.J., Aromando, J., Hsiao, M.S.: Automated asser-
tion generation from natural language specifications. In: 2020
IEEE International Test Conference (ITC). pp. 1–5. IEEE
(2020)

https://github.com/diffblue/hw-cbmc/
https://sportlab.usc.edu/~msabrishami/benchmarks.html
https://sportlab.usc.edu/~msabrishami/benchmarks.html
https://doi.org/10.1007/978-3-030-99524-9_24
https://arxiv.org/abs/2402.00386

[16] Garg, P., Löding, C., Madhusudan, P., Neider, D.: ICE: A robust
framework for learning invariants. In: CAV. Lecture Notes in
Computer Science, vol. 8559, pp. 69–87. Springer (2014)

[17] Germiniani, S., Pravadelli, G.: Harm: a hint-based assertion
miner. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems 41(11), 4277–4288 (2022)

[18] Godbole, A., Ye, L., Manerkar, Y.A., Seshia, S.A.: Mod-
elling and verification of security-oriented resource partitioning
schemes. In: FMCAD. pp. 268–273 (2023)

[19] Hansen, M.C., Yalcin, H., Hayes, J.P.: Unveiling the iscas-85
benchmarks: A case study in reverse engineering. IEEE Design
& Test of Computers 16(3), 72–80 (1999)

[20] Harris, C.B., Harris, I.G.: Glast: Learning formal grammars to
translate natural language specifications into hardware asser-
tions. In: 2016 Design, Automation & Test in Europe Conference
& Exhibition (DATE). pp. 966–971. IEEE (2016)

[21] Hertz, S., Sheridan, D., Vasudevan, S.: Mining hardware as-
sertions with guidance from static analysis. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems
32(6), 952–965 (2013)

[22] IEEE: Combining dynamic slicing and mutation operators for
ESL correction (2012)

[23] Iman, M.R.H., Jervan, G., Ghasempouri, T.: Artmine: Au-
tomatic association rule mining with temporal behavior for
hardware verification. In: 2024 Design, Automation & Test in
Europe Conference & Exhibition (DATE). pp. 1–6. IEEE (2024)

[24] Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-guided
component-based program synthesis. In: ICSE (1). pp. 215–224.
ACM (2010)

[25] Jha, S., Seshia, S.A.: A theory of formal synthesis via inductive
learning. Acta Informatica 54(7), 693–726 (2017)

[26] Kande, R., Pearce, H., Tan, B., Dolan-Gavitt, B., Thakur, S.,
Karri, R., Rajendran, J.: Llm-assisted generation of hardware
assertions. arXiv preprint arXiv:2306.14027 (2023)

[27] Keszocze, O., Harris, I.G.: Chatbot-based assertion generation
from natural language specifications. In: 2019 Forum for Speci-
fication and Design Languages (FDL). pp. 1–6. IEEE (2019)

[28] Krishnamurthy, R., Hsiao, M.S.: Controlled natural language
framework for generating assertions from hardware specifica-
tions. In: 2019 IEEE 13th International Conference on Semantic
Computing (ICSC). pp. 367–370. IEEE (2019)

[29] Krishnamurthy, R., Hsiao, M.S.: Ease: Enabling hardware as-
sertion synthesis from english. In: Rules and Reasoning: Third
International Joint Conference, RuleML+ RR 2019, Bolzano,
Italy, September 16–19, 2019, Proceedings 3. pp. 82–96. Springer
(2019)

[30] Liu, L., Lin, C.H., Vasudevan, S.: Word level feature discovery
to enhance quality of assertion mining. In: Proceedings of the
International Conference on Computer-Aided Design. pp. 210–
217 (2012)

[31] Lo, D., Khoo, S.: Mining patterns and rules for software speci-
fication discovery. Proc. VLDB Endow. 1(2), 1609–1616 (2008)

[32] Neider, D., Roy, R.: What is formal verification without specifi-
cations? A survey on mining LTL specifications. In: Principles of
Verification (3). Lecture Notes in Computer Science, vol. 15262,
pp. 109–125. Springer (2024)

[33] Niemetz, A., Preiner, M.: Bitwuzla. In: International Conference
on Computer Aided Verification. pp. 3–17. Springer (2023)

[34] Orenes-Vera, M., Martonosi, M., Wentzla!, D.: Using llms to
facilitate formal verification of rtl. arXiv e-prints pp. arXiv–2309
(2023)

[35] Parthasarathy, G., Nanda, S., Choudhary, P., Patil, P.: Spec-
tosva: Circuit specification document to systemverilog assertion
translation. In: 2021 Second Document Intelligence Workshop
at KDD (2021)

[36] Raveendran, R., Bhuinya, S.: Customization of ibex risc-v pro-
cessor core. Customization of Ibex RISC-V Processor Core
(2021)

[37] Rosser, B.J.: Cocotb: a python-based digital logic verifica-
tion framework. In: Micro-electronics Section seminar. CERN,
Geneva, Switzerland (2018)

[38] Sheeran, M., Singh, S., Stålmarck, G.: Checking safety proper-
ties using induction and a sat-solver. In: International confer-
ence on formal methods in computer-aided design. pp. 127–144.
Springer (2000)

[39] Shin, H.: Data-centric machine learning pipeline for hardware
verification. In: 2022 IEEE 35th International System-on-Chip
Conference (SOCC). pp. 1–2. IEEE (2022)

[40] Shin, H.: E"cient bug discovery with ma-
chine learning for hardware verification. https:
//community.arm.com/arm-research/b/articles/posts/
e"cient-bug-discovery-with-machine-learning-for-hardware-verification
(2025)

[41] Solar-Lezama, A., Tancau, L., Bodík, R., Seshia, S.A., Saraswat,
V.A.: Combinatorial sketching for finite programs. In: ASPLOS.
pp. 404–415. ACM (2006)

[42] Sun, C., Hahn, C., Trippel, C.: Towards improving verification
productivity with circuit-aware translation of natural language
to systemverilog assertions. In: First International Workshop on
Deep Learning-aided Verification (2023)

[43] Thomas, D., Moorby, P.: The Verilog® hardware description
language. Springer Science & Business Media (2008)

[44] Vijayaraghavan, S., Ramanathan, M.: A practical guide for
SystemVerilog assertions. Springer Science & Business Media
(2005)

[45] Willsey, M., Nandi, C., Wang, Y.R., Flatt, O., Tatlock, Z.,
Panchekha, P.: Egg: Fast and extensible equality saturation.
Proceedings of the ACM on Programming Languages 5(POPL),
1–29 (2021)

[46] Zhao, J., Harris, I.G.: Automatic assertion generation from
natural language specifications using subtree analysis. In: 2019
Design, Automation & Test in Europe Conference & Exhibition
(DATE). pp. 598–601. IEEE (2019)

https://community.arm.com/arm-research/b/articles/posts/efficient-bug-discovery-with-machine-learning-for-hardware-verification
https://community.arm.com/arm-research/b/articles/posts/efficient-bug-discovery-with-machine-learning-for-hardware-verification
https://community.arm.com/arm-research/b/articles/posts/efficient-bug-discovery-with-machine-learning-for-hardware-verification

	Introduction
	Motivating Example
	Background
	Verilog and SystemVerilog Assertions (SVAs)
	Syntax-Guided Synthesis (SyGuS)
	Oracle Guided Inductive Synthesis

	Overview
	Problem Statement
	Proposed SMART Framework

	Trace Collection & Grammar Construction
	Verilog Simulation
	Identifying the Variable Sets: Verilog Analysis

	Oracle-Guided Synthesizer
	Constructing the Grammar G
	Positive and Negative Examples
	Counterexamples
	Assertion Analysis

	Evaluation
	Evaluation Metrics
	Correctness of Assertion Sets
	Meaningfulness of Assertion Sets

	Baselines
	Results
	Readability
	Rewrite system

	Evaluation Details
	Behavioral vs. Structural Verilog
	Effect of Counterexample Refinement
	Limitations

	Related Work
	Conclusions
	References

