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Abstract—Deep Neural Networks (DNNs) excel in learning
hierarchical representations from raw data, such as images, audio,
and text. To compute these DNN models with high performance
and energy efficiency, these models are usually deployed onto
customized hardware accelerators. Among various accelerator
designs, dataflow architecture has shown promising performance
due to its layer-pipelined structure and its scalability in data
parallelism.

Exploiting weights and activations sparsity can further enhance
memory storage and computation efficiency. However, existing ap-
proaches focus on exploiting sparsity in non-dataflow accelerators,
which cannot be applied onto dataflow accelerators because of the
large hardware design space introduced. As such, this could miss
opportunities to find an optimal combination of sparsity features
and hardware designs.

In this paper, we propose a novel approach to exploit unstruc-
tured weights and activations sparsity for dataflow accelerators,
using software and hardware co-optimization. We propose a
Hardware-Aware Sparsity Search (HASS) to systematically deter-
mine an efficient sparsity solution for dataflow accelerators. Over a
set of models, we achieve an efficiency improvement ranging from
1.3× to 4.2× compared to existing sparse designs, which are either
non-dataflow or non-hardware-aware. Particularly, the through-
put of MobileNetV3 can be optimized to 4895 images per second.
HASS is open-source: https://github.com/Yu-Zhewen/HASS

I. INTRODUCTION

Deep Neural Networks (DNNs) models are designed to ex-
tract relevant features from raw data, such as images, audio, and
text. To improve the performance and energy efficiency when
computing these models, the computation is often mapped onto
hardware accelerators. Among various accelerator architectures,
dataflow accelerators have shown significant performance ben-
efits because of their deeply pipelined computation between
layers [1] and scalable data parallelism across devices [2].

In hardware accelerator designs, sparsity has been a popular
topic, such that unnecessary computation with zeros can be
avoided for better efficiency. There are two types of sparsity:

• Weight Sparsity: focusing on the zeros in the weights of
a model, whose positions are often available at compile
time so that they can be optimized statically.

• Activation Sparsity: focusing on the zeros inside the
intermediate activation data between layers. The positions
of these zeros are only known at run-time, as they depend
on the network input.

With the appropriate hardware support, increased sparsity
can lead to fewer computations. To maximize the sparsity,
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Fig. 1: HASS explores the optimal trade-off between classifi-
cation accuracy and operation density. We compare HASS with
other existing sparse MobileNetV2 implementations.

TABLE I: Our work is the first attempt to exploring hardware-
aware unstructured pruning for dataflow accelerators. Our
approach systematically exploits layer-wise sparsity in both
weights and activations coupled with hardware resource-
constrained analysis.

Approaches [7] [8] [9] [5] [6] [10] [11] [4] Ours

Publication Year 2018 2019 2020 2020 2022 2023 2023 2023 2024
Dataflow architecture ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✓
Weight sparsity ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓
Activation sparsity ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✓
Hardware-aware ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✓

pruning is a process that simplifies a model by setting certain
weights and activations to zeros, at minimal accuracy loss based
on a set of criteria [3].

Traditional pruning approaches only consider software met-
rics, such as the overall sparsity in the network, without directly
considering the actual impact on hardware performance. Re-
cently, there has been interest in developing hardware-aware,
co-design pruning approaches for accelerator designs. These
approaches consider hardware performance, such as throughput
and energy efficiency, into the pruning criteria. These ap-
proaches realize co-optimization of both accuracy and hardware
performance.

In non-dataflow hardware accelerators, sparsity is exploited
to lift the performance bottleneck in the off-chip memory



(a) Traditional pruning flow for dataflow accelerator design focuses on software metrics only, where a pruned model is treated ‘read-only’ in
the hardware end.

(b) Our flow integrates hardware metrics into the pruning search process. We will explain the details of each step in the highlighted sections.

Fig. 2: An overview of our approach. When designing a dataflow accelerator, traditional pruning steps are separate from the
hardware synthesis steps, which restricts software and hardware co-optimization. Our flow explores both software and hardware
optimization concurrently, opening up opportunities to find the optimal design.

bandwidth [12]. To efficiently represent sparse data, encoding
techniques are often used to reduce both the memory footprints
and the required off-chip memory bandwidth [13]. Pruning can
be further tailored to optimize individual sparse computation
for efficient data access and processing [14].

However, these approaches cannot be applied to the design
of dataflow accelerators for two reasons. First, the performance
bottleneck for dataflow accelerators is often the computation
resources rather than the off-chip memory bandwidth, because
most weights and activations reside on-chip. More importantly,
in a sparse dataflow accelerator, the overall pipeline perfor-
mance does not scale proportionally with the total non-zero
operations. For example, increasing the sparsity of a non-
slowest layer will not change the pipeline performance at all,
unless it allows for the reallocation of resources to alleviate the
pipeline bottleneck [4].

As such, exploiting the sparsity in a dataflow architec-
ture poses unique challenges in hardware designs, including
scheduling and resource allocation within a given hardware
resource budget. Existing approaches on sparse dataflow archi-
tecture separate the pruning steps and hardware optimization
steps, as shown in Fig. 2a. In this paper, we propose a system-
atic approach to explore unstructured pruning and hardware
optimization in a co-design form, as shown in Fig. 2b. To
the best of our knowledge, our approach is the first attempt at
hardware-aware pruning for dataflow accelerators, as illustrated
in Table II. Our main contributions are as follows.

• The first dataflow accelerator design that exploits both
weight sparsity and activation sparsity coupled with layer-
pipelined execution.

• A hardware-aware, unstructured model pruning algorithm
that considers both software pruning metrics (accuracy,
sparsity ratio) and hardware performance (throughput,
resource estimations) for systematic optimization.

• Over a set of DNN models, we show that our approach
leads to an improved efficiency ranging from 1.3× to 4.2×

compared to existing sparse designs.

II. RELATED WORK

In the existing studies, the sparse DNN-FPGA accelerators
are often implemented as a single sparse-sparse matrix multi-
plication engine, shared by DNN layers in a time-multiplexed
manner. As such, the main challenge is irregular memory
access patterns within and between layers. As such, sparse
data are often encoded to save memory space and simplify
the scheduling of non-zero values to processing units [13].
Lu et al. [8] explored the weight sparsity only. As the po-
sitions of zeros are known at compile-time, a look-up table
is built to match the indices of sparse weights and dense
activations. To exploit the dynamic, data-dependent activation
sparsity, Zhu et al. [9] used the activation value to control the
clock gating of processing units, which leads to energy saving
but the achieved throughput remains the same as the dense
computation. As irregular sparsity pattern leads to inefficient
hardware, Kong et al. [10] proposed the latency-aware pruning
that jointly optimizes the accuracy and latency. Similarly, Qu et
al. [11] modelled energy consumption and processing cycles,
and considered them together in the loss function, so that the
accelerator architecture can be considered.

Instead of scheduling layers in a time-multiplexed manner,
HPIPE [5] and PASS [4] are two works that look in a different
direction, building the dataflow architecture that has multiple
pipelined sparse matrix multiplication engines. To solve the
resource allocation and throughput balancing between multiple
sparse engines, they estimated the distribution of sparse data
in PyTorch and used that estimation to guide the process of
design space exploration. However, HPIPE only exploits the
weight sparsity, while PASS only exploits activation sparsity,
and neither of them has considered the hardware-aware co-
design in their approaches.



Fig. 3: Architecture of the sparse dataflow accelerator. The computation of layers is pipelined where inside each layer, there are
multiple Sparse Vector Dot Product Engines (SPE) operating in parallel. Inside the SPE, clipping modules zero out any weight
or activation that falls below a configurable threshold. Zero-filtering then detects these zeros, while the remaining non-zeros are
dispatched to the MACs (implemented with DSPs) via an arbiter. We also use a dedicated counter to track the number of skipped
zeros and manage accumulation result emissions.

III. UNSTRUCTURED PRUNING ALGORITHM

In this paper, we choose to apply one-shot pruning without
fine-tuning, where a significant portion of the network is pruned
in a single step, to reduce the deployment effort. This is
in contrast to iterative pruning approaches, where pruning is
performed gradually over multiple iterations, accompanied by
fine-tuning stages [15].

In terms of the pruning criterion, we use the magnitude-based
evaluation (L1 norm), where weights and activations having
smaller magnitudes below the threshold will be forced to zeros.
The pruning threshold can either be uniform or unique across
layers. Adopting a uniform threshold is straightforward to
explore the trade-off between accuracy and sparsity. However,
setting unique thresholds instead better preserve the network
accuracy, as many researchers have demonstrated the diversity
of statistics per layer [14], [16].

Therefore, for each individual layer in the network, our prun-
ing algorithm requires the identification of unique thresholds
τw and τa for weight and activation pruning respectively, and
the introduced sparsity is denoted as Sw and Sa, with a range
between 0 and 1, indicating the fraction of zeros in the data.
As introduced before, once the pruning threshold is given, the
weight sparsity Sw is a fixed value since the positions of zeros
are already available at compile time. However, the activation
sparsity Sa depends on the network’s input, making it dynamic
at run-time.

IV. SPARSE DATAFLOW ARCHITECTURE

Traditional sparse architectures use two approaches to ad-
dress the challenges in memory storage and computational
efficiency. For efficient memory storage, they statically en-
code weights, trading off between efficient memory storage

and runtime overhead caused by decoding [13]. For efficient
computation, they skip zeros during computation, but leaving
the corresponding hardware operator idle [9]. To fully utilize
the available computation resources, we statically analyze the
run-time sparsity and pre-fetch data in a buffer to keep the
hardware operators busy at each cycle. This leads to better
performance than the zero-skipping approach.

Fig. 3 illustrates our target sparse dataflow accelerator archi-
tecture. On the left, the model is presented in a dataflow graph,
where each node represents a dataflow component in hardware
and each edge represents their data interface between every
two nodes. The blue nodes are often resource intensive, such
as DSP blocks on an FPGA, and can be significantly optimized
by sparse computation. In each blue node, data parallelism
is applied to improve performance. For example, the middle
of the figure represents a hardware convolutional layer. The
hardware optimization steps consider two metrics: 1) spatial
data parallelism by duplicating hardware processing elements,
shown as multiple Sparse Vector Dot Product Engine (SPE) in
the figure, and 2) time-wise folding by iterating using the same
SPE and accumulating the result, shown as ACC and “+” in
the figure. Detailed exploration on these metrics are explained
in Section V-A.

The hardware implementation of sparse computation is in
SPE, shown in the right side of Fig. 3. The engine takes a set
of inputs from the preceding layer and weights from the on-
chip memory, which are passed through the clip modules which
would zero out any value below the configurable threshold.
Afterwards, zero values are directly forwarded to the counter
on the left to keep track of the iteration count, while non-zero
pairs are buffered in a round-robin arbiter for computation.
The arbiter dispatches multiple pairs to the available Multi-



ply–Accumulate (MAC) units concurrently such that they are
busy in each clock cycle. Once the counter reaches full, the
output data will be released.

Note that the accumulation of the vector product can take
place both inside each SPE and also between multiple SPEs.
This strategy can constrain the fan-in and fan-out of the arbiter,
to reduce the area overhead and the degradation of clock
frequency.

The number of the MACs in each SPE, denoted as N , is
statically determined by estimating the overall sparsity of the
input activations and weights on a calibration dataset. Consider
the scenario where a SPE takes M input weight pairs. In
traditional hardware architecture for dense computation, the
computation would take M/N cycles to complete. Each MAC
unit accumulates for M/N times before emitting partial sums
to the N -input adder tree for the final output calculation. In
sparse hardware architecture, let S be the average sparsity of
the input activation and weight pair, where the computations
can be skipped if any s any of them is equal to zero. In this
case, the arbiter will schedule the computation to complete with
t cycles, where:

t(S) = ⌈ (1− S)×M

N
⌉ (1)

This is also known as initial interval of the SPE. Consider-
ing both weight and activation sparsity, our focus is on the
probability of either weight or activation becoming zero. In
our implementation, N and M are customized for each layer
according to its S.

The proposed sparse computation engine can be aggregated
to enhance performance, both within a layer (intra-layer) and
between layers (inter-layer). Within each convolutional layer,
concurrent vector dot products can occur, allowing parallel
computation across the input-channel (I) and output-filter (O)
dimensions. We designate the levels of this parallelism as
i ∈ [1, I] and o ∈ [1, O], respectively. In the case of un-
structured pruning, the sparsity pattern is not uniform within
a convolutional layer. Consequently, the processing rates of
i × o SPEs are dynamic and may be imbalanced at run-time,
potentially causing pipeline stalls. To mitigate this, we employ
the following strategies:

• Balancing Strategy: During compile-time, we estimate
the weight and activation sparsity in each input-channel
and output-filter. We then utilize simulated annealing to
solve an allocation problem. This assigns the computation
of I input-channels and O output-filters to i × o sparse
computation engines, minimizing the difference in their
processing rates.

• Buffering Strategy: Buffering is employed to absorb
the instantaneous variance of dynamic processing rates.
The selection of buffer size involves a trade-off between
resource usage and throughput, and we determine the
buffer size following a heuristic approach similar to [4]
which is based on the observation of moving window
statistics.

In the sparse dataflow architecture, computation is pipelined
on a layer-by-layer basis using FIFOs and handshake signals.

In this architecture, activation data is not encoded despite its
sparsity. This is because most intermediate data remains on-
chip, and frequent encoding and decoding between layers would
incur significant computational costs.

V. HARDWARE-AWARE WORKFLOW

A. Accelerator Design Space Exploration

This section focuses on the Design Space Exploration (DSE)
problem of the sparse DNN-FPGA accelerator, and it can be
formalized using the following terms:

• L : {l0, l1, l2...} denotes the layers in a network;
• S ⊆ [0, 1) denotes the sparsity search space;
• D : {d0, d1, d2...} denotes all possible hardware design

points of a layer;
• g ⊆ L×D × S denotes a design point of the network;

Given a budget for the hardware resources R, we search for an
efficient g to maximize network throughput in a greedy form.

1) Performance modeling: Let Cl denote the number of
operations (including the zeros) in layer l. The throughput of
the same layer is then:

θ(l, d, S) =
i× o×M

Cl × t(S)
(2)

Since t is dynamic, depending on the average sparsity S, so
as the throughput of the layer. The sparse dataflow architecture
is layer-wise pipelined, therefore, the network throughput θ is
restricted by the slowest layer:

∀g. θ ≤ min
l∈L

θ(l, d, S) (3)

The aim of the DSE process is to determine an efficient g with
a large θ.

.
2) Resource-constrained rate balancing: Apart from the

slowest layer, the remaining layers in the pipeline may under-
perform, meaning that their actual throughput is significantly
lower than the maximum achievable throughput using the
allocated resources. These hardware resources could be unused
at run-time, leading to inefficiency. To address this, we can
reduce the parallelism of these layers without affecting overall
throughput to enable more parallelism at the performance
bottleneck. This is also known as rate balancing.

Let θr(l, d, S) represent the actual throughput of a layer in-
stance (l, d, S). After rate balancing, each layer in the balanced
design g′ is configured with a parallelism level close to its
actual throughput.

θ′l = min{θ(l, d′, S)|θ(l, d′, S) ≥ θr(l, d, S)} (4)

∀l ∈ L ∧ (l, d, S) ∈ g ⇒ θ(l, d′, S) = θ′l ∧ (l, d′, S) ∈ g′ (5)

Constraint (5) ensures that all layers in the design are com-
puting efficiently in a pipeline, optimizing the overall resource
utilization.
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Fig. 4: DSE results of a specific sparse ResNet-18 workload
with 16 3 × 3 convolutional layers. The allocation of MAC
per SPE mainly depends on the per-layer sparsity statistic. A
higher sparsity leads to a smaller MAC per SPE. However, the
increase of the layer index leads to an increasing number of
convolutional filters, so as the number parallel SPEs to match
the rate between layers.

3) Resource-constrained incrementing: The DSE starts with
the resource-minimal design, where the computation within
each layer is fully sequential. At each iteration, the DSE
increases the parallelism of the slowest layer by a small step
followed by the rate balancing process described in step 2).
This incremental process repeats until the resource budget R
satisfies. The resource utilization of each sparse computation
engine is modeled on the basis of the regression model.

4) Partitioning and reconfiguration: In practice, the restric-
tion caused by finite hardware resources could fail to map an
entire DNN to a single dataflow accelerator device. In this work,
we fold the dataflow pipeline at the block level and iteratively
compute them on the available hardware resources using full
reconfiguration on an FPGA device. This allows changing
hardware architecture at run-time at the price of additional
reconfiguration time. To reduce such overhead caused by the
reconfiguration time, the data is processed in a large batch size
[1]. The decisions of where to split the partition and the number
of partitions are given by a simulated annealing solver that
trade-off the reconfiguration time and data parallelism gained.

B. Multi-objective Search

Let’s denote the per-layer weight and activation pruning
threshold as τw and τa. To identify the optimal values of
them, we construct the following optimization problem for the
network L:

• facc: network accuracy, measured on validation data;
• fspa: average sparsity of the network, including both

weights and activations;
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Fig. 5: Comparison between software metrics-only sparsity
search and the proposed hardware-aware sparsity search for
ResNet-18. We use 96 iteration steps for both approaches.

• fthr: network throughput for a given pruned network
searched by DSE;

• fdsp: resource utilization of the accelerator, represented by
the number of DSPs used, which is usually the bottleneck
in dataflow accelerators.

The objective for the hardware-aware pruning is to maximize
accuracy, sparsity, and throughput while minimizing resource
utilization:

max
{τw,τa},l∈L

facc(L)+λ1fspa(L)+λ2fthr(L)−λ3fdsp(L) (6)

λ1, λ2 and λ3 are hyperparameters that normalize the values
of these metrics, determined by heuristics. An efficient search
algorithm for multi-objective search is required, and we use
Tree-structured Parzen Estimator (TPE) [17], a Bayesian op-
timization algorithm that uses a tree structure to model the
probability density of the objective function and iteratively con-
structs this tree based on observed evaluations of the objective
function.

The proposed hardware-aware pruning approach could
achieve better computation efficiency (throughput per area) than
the same pruning approach with software metrics only (i.e.
accuracy and sparsity). Fig. 5 shows a comparison of these
two approaches for ResNet-18. The proposed hardware-aware
search shown as the green curve is guided by the objective func-
tion in Equation 6. The software metrics-only search shown as
the blue curve only uses accuracy and sparsity as the objective
function. Both approaches ran 96 iteration steps, taking about 3
hours to complete. At the initial stage, the change in green curve
in computation efficiency is slow because the objective function
is complex and contains more hardware metrics. Then it reaches
a better computation efficiency because the hardware metrics
guided the search towards efficient hardware implementation.
This is more helpful if more iteration steps are performed for
large networks.

VI. EVALUATION

In terms of the experiment set-up, the FPGA device we used
for the result measurements is AMD Xilinx Alveo U250, and
the version of software employed is Vitis 2023.1. The clock



TABLE II: A comparison with state-of-the-art sparse DNN-FPGA accelerators.

Models ResNet-18 ResNet-50 MobileNetV2 MobileNetV3S MobileNetV3L

Works [4] Ours [6] [4] Ours [6] [5] [4] Ours Dense Ours Dense Ours

Accuracy 69.75 69.59 N/A 76.13 75.58 70.80 71.90 71.79 71.45 67.42 67.28 74.04 73.76
Platform U250 U250 7V690T U250 U250 7V690T Stratix10 U250 U250 U250 U250 U250 U250
Freq (MHz) 250 250 150 250 250 150 390 250 250 250 250 250 250
DSPs 10974 12234 2160 11952 7434 2160 5928 3596 5261 4282 1796 6577 4324
kLUTs 1659 1679 308 1721 1724 308 523 1552 1720 971 507 1535 1728
BRAM18k 4554 4817 1883 4262 4178 1883 4512 1774 1902 2278 1779 3706 5376
images/s 1904 2819 33 330 776 302 4539 1660 4495 4890 4895 1897 1898
images/cycle/DSP (10−9) 0.69 0.92 0.10 0.11 0.42 0.93 1.96 1.84 3.42 4.57 10.90 1.15 1.76
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Fig. 6: By exploiting sparsity in both weights and activations,
our approach achieves significant speedup compared to the
dense implementation.

frequency of our accelerators is 250MHz. We examine our
approach on a set of mainstream DNN benchmarks including
ResNet-18, ResNet-50, MobileNetV2 and MobileNetV3, taken
from pyTorch torchvision and trained on the ImageNet dataset.
All the networks quantized to 16-bit fixed point for both
weights and activations. Our pruning algorithm is one-shot and
post-training, without applying any fine-tuning to the networks.

The tool flow is presented in Fig. 2b. We implemented a
fully-automated flow that translates DNN models to Torch FX
graph. In an FX graph, the model is represented as a dataflow
graph similar to the one shown on the left of Fig. 3. Our
pruning search engine extracts the layer-wise pruning space
using the TPE algorithm. With the proposed hardware model
presented in Section V-A, the hardware cost is evaluated as
well as the accuracy loss. This guides the next iteration step
of the pruning search process. The final pruned model and
its hardware parameters are sent to a hardware synthesis tool
for hardware implementation. Our approach is general and
can be extended to support other hardware synthesis tools.
For this work, we used a DNN-FPGA synthesis tool named
fpgaConvNet [1] for prototyping.

We compare our approach with other sparse DNN-FPGA
accelerators from related works. Our evaluation encompasses
the trade-off among accuracy, resource, throughput (images/s)
and hardware efficiency (images/cycle/DSP). Fig. 6 shows the
improvements from the dense dataflow architecture to the
proposed sparse dataflow architecture, and the detailed results

are shown in Table II. We made the following observations:

• Compared with related work using sparse computation, the
dataflow architectures, including HPIPE [5], PASS [4] and
Ours, have significant performance improvements over the
non-dataflow design [6] because of its deeply pipelined
computation. For example, when targeting ResNet-50 and
MobileNetV2, the advantage in terms of throughput per
DSP can be up to 4.2 × and 3.7×, respectively.

• The advantage of sparse dataflow architecture is not al-
ways free. Compared to the non-dataflow sparse accel-
erator design [6], the dataflow approach requires more
resources (upto 3× DSPs and 5× LUTs). This is because
the hardware dataflow pipeline requires extra logic and
buffers in exchange for pipeline performance and data
parallelism scalability.

• For MobileNetV3, we also include the dense results in the
table. Compared with the dense results, our sparse imple-
mentations achieve the same throughput with a reduced
number of DSP utilized. The throughput remains similar
because the designs are either LUT or BRAM bounded.

• PASS [4] is the work related most to our solution, and it
optimizes hardware for the activation sparsity. However,
they do not explore weight sparsity or consider to drive
the pruning strategy with hardware information. Compared
with them, our approach achieves improved efficiency
with 1.3×, 3.8× and 1.9× on ResNet-18, ResNet-50
and MobileNetV2. Meanwhile, our post-training accuracy
degradation is less than 0.6 percentage points.

• The variance in the results depends on the sensitivity of the
models to data sparsity. The accuracy loss may be reduced
with the help of fine-tuning, at the price of training time.

VII. CONCLUSION

In this paper, we propose a novel approach to exploit soft-
ware and hardware co-optimization for sparsity, targeting the
dataflow DNN-FPGA accelerator. We implement a hardware-
aware sparsity search that considers both software pruning
metrics and hardware performance for systematic optimization.
We also exploit both static weight sparsity and dynamic acti-
vation sparsity for dataflow accelerator design. Over a set of
DNN models, we achieve 1.3× to 4.2× efficiency compared
to existing sparse designs. In terms of future work, we will
delve into the integration of a more diverse range of pruning
algorithms to further enhance applicability.
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